• Title/Summary/Keyword: meshfree methods

Search Result 40, Processing Time 0.021 seconds

Numerical modelling of contaminant transport using FEM and meshfree method

  • Satavalekar, Rupali S.;Sawant, Vishwas A.
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.117-129
    • /
    • 2014
  • Groundwater contamination is seeking a lot of attention due to constant degradation of water by landfills and waste lagoons. In many cases heterogeneous soil system is encountered and hence, a finite element model is developed to solve the advection-dispersion equation for layered soil system as FEM is a robust tool for modelling problems of heterogeneity and complex geometries. Recently developed Meshfree methods have advantage of eliminating the mesh and construct approximate solutions and are observed that they perform effectively as compared to conventional FEM. In the present study, both FEM and Meshfree method are used to simulate phenomenon of contaminant transport in one dimension. The results obtained are agreeing with the values in literature and hence the model is further used for predicting the transport of contaminants. Parametric study is done by changing the dispersion coefficient, average velocity, geochemical reactions, height of leachate and height of liner for obtaining suitability.

Analysis on a Simple Waveguide Using Meshfree Method (무요소법을 이용한 waveguide 내의 필드 분포 해석)

  • Lee, Chany;Woo, Dong-Kyun;Jung, Hyun-Kyo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.190-192
    • /
    • 2008
  • This paper shows the formulation of fast moving least square reproducing kernel method (FMLSRKM) which is a kind of meshfree methods. FMLSRKM has some advantages compared to conventional numerical techniques such as finite element method. For simple analysis on a rectangular waveguide, point collocation scheme is introduced and applied.

  • PDF

The use of RKPM meshfree methods to compute responses to projectile impacts and blasts nearby charges

  • Choi, Hyung-Jin;Crawford, John;Wu, Youcai
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.119-143
    • /
    • 2010
  • This paper presents results from a study concerning the capability afforded by the RKPM (reproducing kernel particle method) meshfree analysis formulation to predict responses of concrete and UHPC components resulting from projectile impacts and blasts from nearby charges. In this paper, the basic features offered by the RKPM method are described, especially as they are implemented in the analysis code KC-FEMFRE, which was developed by Karagozian & Case (K&C).

Meshless equilibrium on line method (MELM) for linear elasticity

  • Sadeghirad, A.;Mohammadi, S.;Kani, I. Mahmoudzadeh
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.511-533
    • /
    • 2010
  • As a truly meshfree method, meshless equilibrium on line method (MELM), for 2D elasticity problems is presented. In MELM, the problem domain is represented by a set of distributed nodes, and equilibrium is satisfied on lines for any node within this domain. In contrary to conventional meshfree methods, test domains are lines in this method, and all integrals can be easily evaluated over straight lines along x and y directions. Proposed weak formulation has the same concept as the equilibrium on line method which was previously used by the authors for enforcement of the Neumann boundary conditions in the strong-form meshless methods. In this paper, the idea of the equilibrium on line method is developed to use as the weak forms of the governing equations at inner nodes of the problem domain. The moving least squares (MLS) approximation is used to interpolate solution variables in this paper. Numerical studies have shown that this method is simple to implement, while leading to accurate results.

Coupling of Meshfree Method and Finite Element Method for Dynamic Crack Propagation Analysis (무요소법과 유한요소법의 결합에 의한 동적균열전팍문제의 해석)

  • 이상호;김효진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.324-331
    • /
    • 2000
  • In this study, a new algorithm analyzing dynamic crack propagation problem by the coupling technique of Meshfree Method and Finite Element Method is proposed. The coupling procedure of two methods is presented with a short description of Meshfree Method especially, Element-free Galerkin (EFG) method. The elastodynamic fracture theory is presented, and a numerical implementation procedure for dynamic fracture analysis by Meshfree Method is also discussed. A couple of dynamic crack propagation problems illustrate the performance of the propsed technique. The accuracy of numerical solutions by the developed algorithm are compared with those of analytical solutions and experimental ones.

  • PDF

Efficient Meshfree Analysis Using Stabilized Conforming Nodal Integration for Metal Forming Simulation

  • Han, Kyu-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.943-950
    • /
    • 2010
  • An efficient meshfree method based on a stabilized conforming nodal integration method is developed for elastoplastic contact analysis of metal forming processes. In this approach, strain smoothing stabilization is introduced to eliminate spatial instability in Galerkin meshfree methods when the weak form is integrated by a nodal integration. The gradient matrix associated with strain smoothing satisfies the integration constraint for linear exactness in the Galerkin approximation. Strain smoothing formulation and numerical procedures for path-dependent problems are introduced. Applications of metal forming analysis are presented, from which the computational efficiency has been improved significantly without loss of accuracy.

Meshfree Analysis of Elasto-Plastic Deformation Using Variational Multiscale Method (변분적 다중 스케일 방법을 이용한 탄소성 변형의 무요소해석)

  • Yeon Jeoung-Heum;Youn Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1196-1202
    • /
    • 2004
  • A meshfree multi-scale method has been presented for efficient analysis of elasto-plastic problems. From the variational principle, problem is decomposed into a fine scale and a coarse scale problem. In the analysis only the plastic region is discretized using fine scale. Each scale variable is approximated using meshfree method. Adaptivity can easily and nicely be implemented in meshree method. As a method of increasing resolution, partition of unity based extrinsic enrichment is used. Each scale problem is solved iteratively. Iteration procedure is indispensable for the elasto-plastic deformation analysis. Therefore this kind of solution procedure is adequate to that problem. The proposed method is applied to Prandtl's punch test and shear band problem. The results are compared with those of other methods and the validity of the proposed method is demonstrated.

Concrete fragmentation modeling using coupled finite element - meshfree formulations

  • Wu, Youcai;Choi, Hyung-Jin;Crawford, John E.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.173-195
    • /
    • 2013
  • Meshfree methods are known to have the capability to overcome the strict regularization requirements and numerical instabilities that encumber the finite element method (FEM) in large deformation problems. They are also more naturally suited for problems involving material perforation and fragmentation. To take advantage of the high efficiency of FEM and high accuracy of meshfree methods, a coupled finite element (FE) and reproducing kernel (RK, one of the meshfree approximations) formulation is described in this paper. The coupling of FE and RK approximation is implemented in an evolutionary fashion, where the extent and location of the evolution is dependent on a triggering criteria provided by the material constitutive laws. To enhance computational efficiency, Gauss quadrature is applied to integrate both FE and RK domains so that no state variable transfer is required when mesh conversion is performed. To control the hourglassing that might occur with 1-point integrated hexahedral grids, viscous type hourglass control is implemented. Meanwhile, the FEM version of the K&C concrete (KCC) model was modified to make it applicable in both FE and RK formulations. Results using this code and the KCC model are shown for the modeling of concrete responses under quasi-static, blast and impact loadings. These analyses demonstrate that fragmentation phenomena of the sort commonly observed under blast and impact loadings of concrete structures was able to be realistically captured by the coupled formulation.

Numerical Fracture analysis of prestressed concrete beams

  • Rabczuk, Timon;Zi, Goangseup
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.153-160
    • /
    • 2008
  • Fracture of prestressed concrete beams is studied with a novel and robust three-dimensional meshfree method. The meshfree method describes the crack as a set of cohesive crack segments and avoids the representation of the crack surface. It is ideally suited for a large number of cracks. The crack is modeled by splitting particles into two particles on opposite sides of the crack segment and the shape functions of neighboring particles are modified in a way the discontinuous displacement field is captured appropriately. A simple, robust and efficient way to determine, on which side adjacent particles of the corresponding crack segment lies, is proposed. We will show that the method does not show any "mesh" orientation bias and captures complicated failure patterns of experimental data well.

Study On The Element Free Galerkin Method Using Bubble Packing Technique (버블패킹기법을 이용한 무요소 갤러킨법에 관한 연구)

  • Jeong, Sun-Wan;Choe, Yu-Jin;Kim, Seung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2469-2476
    • /
    • 2000
  • The meshing of the domain has long been the major bottleneck in performing the finite element analysis. Research efforts which are so-called meshfree methods have recently been directed towards eliminating or at least easing the requirement for meshing of the domain. In this paper, a new meshfree method for solving nonlinear boundary value problem, based on the bubble packing technique and Delaunay triangle is proposed. The method can be efficiently implemented to the problems with singularity by using formly distributed nodes.