Browse > Article
http://dx.doi.org/10.12989/imm.2013.6.2.173

Concrete fragmentation modeling using coupled finite element - meshfree formulations  

Wu, Youcai (Karagozian & Case (K&C))
Choi, Hyung-Jin (Karagozian & Case (K&C))
Crawford, John E. (Karagozian & Case (K&C))
Publication Information
Interaction and multiscale mechanics / v.6, no.2, 2013 , pp. 173-195 More about this Journal
Abstract
Meshfree methods are known to have the capability to overcome the strict regularization requirements and numerical instabilities that encumber the finite element method (FEM) in large deformation problems. They are also more naturally suited for problems involving material perforation and fragmentation. To take advantage of the high efficiency of FEM and high accuracy of meshfree methods, a coupled finite element (FE) and reproducing kernel (RK, one of the meshfree approximations) formulation is described in this paper. The coupling of FE and RK approximation is implemented in an evolutionary fashion, where the extent and location of the evolution is dependent on a triggering criteria provided by the material constitutive laws. To enhance computational efficiency, Gauss quadrature is applied to integrate both FE and RK domains so that no state variable transfer is required when mesh conversion is performed. To control the hourglassing that might occur with 1-point integrated hexahedral grids, viscous type hourglass control is implemented. Meanwhile, the FEM version of the K&C concrete (KCC) model was modified to make it applicable in both FE and RK formulations. Results using this code and the KCC model are shown for the modeling of concrete responses under quasi-static, blast and impact loadings. These analyses demonstrate that fragmentation phenomena of the sort commonly observed under blast and impact loadings of concrete structures was able to be realistically captured by the coupled formulation.
Keywords
Reproducing Kernel (RK); Finite Element (FE); coupled FE/RK; fragmentation; concrete;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu, T., Zhang, J.D. and Atluri, S.N. (1998), "A meshless local boundary integral equation (LBIE) method for solving nonlinear problems", Comput. Mech., 22, 174-186.   DOI   ScienceOn
2 Wang, D. and Lin, Z. (2011), "Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures", Comput. Mech., 48, 47-63.   DOI
3 Wang, D. and Sun, Y. (2011), "A Galerkin meshfree formulation with stabilized conforming nodal integration for geometrically nonlinear analysis of shear deformable plates", Int. J. Comput. Meth., 8, 685-703.   DOI   ScienceOn
4 Wang, D. and Wu, Y. (2008), "An efficient Galerkin meshfree analysis of shear deformable cylindrical panels", Interact. Multiscale Mech., 1, 339-355.   DOI   ScienceOn
5 Wang, D. and Chen, J.S. (2004), "Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation", comput. Meth. Appl. Mech. Eng., 193, 1065-1083.   DOI   ScienceOn
6 Wang, D. and Chen, J.S. (2006), "A locking-free meshfree curved beam formulation with the stabilized conforming nodal integration", Comput. Mech., 39(1), 83-90.   DOI   ScienceOn
7 Wang, D., Li, Z., Li, L. and Wu, Y. (2011), "Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium", Sic. China-Tech. Sci., 54, 573-580.   DOI   ScienceOn
8 Wang, H.P., Wu, C.T., Botkin, M. and Guo, Y. (2009), "A coupled meshfree/finite element method for automotive crashworthiness simulations", Int. J. Impact Eng., 36(10-11), 1210-1222.   DOI   ScienceOn
9 Wu, Y. (2005) "A stabilized semi-Lagrangian Galerkin meshfree formulation for extremely large deformation analysis", Ph.D. Dissertation, UCLA.
10 Wu, Y., Magallanes, J.M., Choi, H.J. and Crawford, J.E. (2013), "An evolutionarily coupled finite element - meshfree formulation for modeling concrete behaviors under blast and impact loadings", ASCE J. Eng. Mech., 139(4), 525-536.   DOI
11 Zhou, M., Ravichandran, G. and Rosakis, A.J. (1996), "Dynamically propagating shear bands in impact-loaded prenotched plates - 2. Numerical Simulations", J. Mech. Physic Solid, 44(6), 1007-1032.   DOI   ScienceOn
12 Lin, J.I. (2005), DYNA3D: a nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics, User Manual, UCRL-MA-107254, Methods Development Group, Lawrence Livermore National Laboratory.
13 Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Meth. Fluids, 20, 1081-1106.   DOI   ScienceOn
14 Liu, W.K., Jun, S., Sihling, D.T., Chen, Y. and Hao, W. (1997), "Multiresolution reproducing kernel particle method for computational fluid dynamics", Int. J. Numer. Meth. Fluids, 24(12), 1391-1415.   DOI
15 Lu, H. and Chen, J.S. (2002), "Adaptive meshfree particle method", Lecture Notes Comput. Sci. Eng., 26, 251-267.
16 Lu. Y.Y., Belytschko, T. and Gu, L. (1994), "A new implementation of the element free galerkin methods", Compu. Meth. Appl. Mech. Eng., 113, 397-414.   DOI   ScienceOn
17 Malvar, L.J., Crawford, J.E., Wesevich, J.W. and Simons, D. (1997), "A plasticity concrete material model for DYNA3D", Int. J. Impact Eng., 19, 847-873.   DOI   ScienceOn
18 Monaghan, J.J. (1988), "An introduction to SPH", Comput. Physic. Commun., 48, 89-96.   DOI   ScienceOn
19 Rabczuk, T. and Eibl, J. (2003), "Simulation of high velocity concrete fragmentation using SPH/MLSPH", Int. J. Numer. Meth. Eng., 56, 1421-1444.   DOI   ScienceOn
20 Puso, M.A., Chen, J.S., Zywicz, E. and Elmer, W. (2008), "Meshfree and finite element nodal integration method", Int. J. Numer. Meth. Eng., 74, 416-446.   DOI   ScienceOn
21 Wagner, G.J. and Liu, W.K. (2000), "Application of essential boundary conditions in mesh-free methods: a corrected collocation method", Int. J. Numer. Meth. Eng., 47, 1367-1379.   DOI
22 Wang, D. and Chen, J.S. (2008), "A Hermite reproducing kernel approximation for thin plate analysis with sub-domain stabilized conforming integration", Int. J. Numer. Meth. Eng., 74, 368-390   DOI   ScienceOn
23 Courant, R. (1942), "Variational methods for the solution of problems of equilibrium and vibrations", Transaction of American Mathematical Society, 1-23.
24 Crawford, J.E., Chen, J.S., Choi, H.J. and Wu, Y. (2005), "Description of meshfree methods developed for fragment impact, penetrations and other problems", TR-05-71.1, Karagozian & Case, Burbank, CA.
25 Crawford, J.E., Magallanes, J.M., Lan, S. and Wu, Y. (2011), User's manual and documentation for release III of the K&C concrete material model in LS-DYNA, TR-11-36-1, Technical report, Karagozian & Case, Burbank, CA.
26 Fernandez-Mendez, S. and Huerta, A. (2004), "Imposing essential boundary conditions in mesh-free methods", Compu.Meth. Appl. Mech. Eng., 193, 1257-1275.   DOI   ScienceOn
27 Flanagan, D.P. and Belytshcko, T. (1981), "A uniform strain hexahedron and quadrilateral with orthogonal hourglass control", Int. J. Numer. Meth. Eng., 17, 679-706.   DOI   ScienceOn
28 Gingold, R.A. and Monaghan, J.J. (1972), "Smooth particle hydrodynamics: theory and application to non-spherical stars", Monthly Notices of the Royal Astronomical Society, 181, 375-389.
29 Guan, P.C., Chi, S.W., Chen, J.S., Slawson, T.R. and Roth, M.J. (2011), "Semi-Lagrangian reproducing kernel particle method for fragment-impact problems", Int. J. Impact Eng., 38, 1033-1047.   DOI   ScienceOn
30 Guan, P.C., Chen, J.S., Wu, Y., Teng, H., Gaido,s J., Hofstetter, K. and Alsaleh, M. (2009), "Semi-Lagrangian reproducing kernel formulation and application to modeling earth moving operations", Mech. Mater., 41, 670-683.   DOI   ScienceOn
31 Guo, Y., Wu, C.T., Botkin, M.E. and Wang, H.P. (2004), "Coupled FEM/Meshfree shear-deformable shells for nonlinear analysis of shell structures", Proceedings of WCCM VI in conjunction with APCOM 04, September, Beijing, China.
32 Hu, W., Wu, C.T. and Saito, K. (2010), "LS-DYNA meshfree interactive adaptivity and its application", 11th international LS-DYNA Users Conference, Detroit, MI.
33 Chen, J.S. and Wu, Y. (2007), "Stability in Lagrangian and semi-Lagrangian reproducing kernel discretizations using nodal integration in nonlinear solid mechanics", Compu.Meth. Appl. Mech. Eng., (Eds. V. M. A. Leitao, C.J.S. Alves, C. A. Duarte), Springer, 55-77
34 Chen, J.S., Crawford, J.E. and Wu, Y. (2006), "Development of meshfree methods for fragment impact problems", TR 06 58.1, Karagozian & Case, Burbank, CA.
35 Chen, J.S., Han, W., You, Y. and Meng, X. (2003), "A reproducing kernel method with nodal interpolation property", Int. J. Numer. Meth. Eng., 56, 935-960.   DOI   ScienceOn
36 Chen, J.S., Pan, C. and Wu, C.T. (1998c), "Application of reproducing kernel particle method to large deformation contact analysis of elastomers", Rubber Chem. Tech., 71, 191-213.   DOI   ScienceOn
37 Chen, J.S., Pan, C. and Wu, C.T. (1998b), "Large deformation analysis of rubber based on a reproducing kernel particle method", Comput. Mech., 22, 289-307.   DOI   ScienceOn
38 Chen, J.S., Wu, C.T., Chi, L.C. and Huck, F. (2001b), "A Lagrangian meshfree formulation for geotechnical material", J. Eng. Mech., 127, 440-449.   DOI   ScienceOn
39 Chen, J.S., Pan, C., Roque, C.M.O.L. and Wang, H. (1998a), "A Lagrangian reproducing kernel particle method for metal forming analysis", Comput. Mech., 22, 289-307.   DOI   ScienceOn
40 Chen, J.S., Pan, C., Wu, C.T. and Liu, W.K. (1996), "Reproducing kernel particle methods for large deformation analysis of nonlinear structures", Compu.Meth. Appl. Mech. Eng., 139, 195-227   DOI   ScienceOn
41 Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001a), "A stabilized conforming nodal integration for Galerkin meshfree methods", Int. J. Numer. Meth. Eng., 50, 435-466, 2001.   DOI   ScienceOn
42 Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2002), "Nonlinear version of stabilized conforming nodal integration for Galerkin meshfree methods", Int. J. Numer. Meth. Eng., 53, 2587-2615.   DOI   ScienceOn
43 Chen, W.F. (1982), "Plasticity in Reinforced Concrete", McGraw Hill, New York
44 Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37(2), 229-256.   DOI   ScienceOn
45 Bardenhagen, S.G. and Kober, E.M. (2004), "The meneralized interpolation material point method", Comput. Modeling Eng. Sci., 5(6), 477-496.
46 Batra, R.C. and Lear, M.H. (2004), "Simulation of brittle and ductile fracture in an impact loaded prenotched plate", Int. J. Fracture, 126(2), 179-203.   DOI
47 Belytschko, T. and Tabbara, M. (1996), "Dynamic fracture using element free Galerkin methods", Int. J. Numer. Meth. Eng., 39(6), 923-938.   DOI
48 Belytschko, T., Lu, Y.Y. and Gu, L. (1995), "Element-free Galerkin methods for static and dynamic fracture0", Int. J. Solids Struct., 32(17-18), 2547-2570.   DOI   ScienceOn
49 Chen, J.S. and Wang, D. (2006), "A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates", Int. J. Numer. Meth. Eng., 68(2), 151-172.   DOI   ScienceOn