Browse > Article
http://dx.doi.org/10.12989/sem.2010.35.4.511

Meshless equilibrium on line method (MELM) for linear elasticity  

Sadeghirad, A. (School of Civil Engineering, University of Tehran)
Mohammadi, S. (School of Civil Engineering, University of Tehran)
Kani, I. Mahmoudzadeh (School of Civil Engineering, University of Tehran)
Publication Information
Structural Engineering and Mechanics / v.35, no.4, 2010 , pp. 511-533 More about this Journal
Abstract
As a truly meshfree method, meshless equilibrium on line method (MELM), for 2D elasticity problems is presented. In MELM, the problem domain is represented by a set of distributed nodes, and equilibrium is satisfied on lines for any node within this domain. In contrary to conventional meshfree methods, test domains are lines in this method, and all integrals can be easily evaluated over straight lines along x and y directions. Proposed weak formulation has the same concept as the equilibrium on line method which was previously used by the authors for enforcement of the Neumann boundary conditions in the strong-form meshless methods. In this paper, the idea of the equilibrium on line method is developed to use as the weak forms of the governing equations at inner nodes of the problem domain. The moving least squares (MLS) approximation is used to interpolate solution variables in this paper. Numerical studies have shown that this method is simple to implement, while leading to accurate results.
Keywords
computational mechanics; meshfree methods; equilibrium on line method (MELM); moving least squares (MLS) approximation; elasticity;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Sadeghirad, A. and Mohammadi, S. (2007), "Equilibrium on line method (ELM) for imposition of Neumann boundary conditions in the finite point method (FPM)", Int. J. Numer. Meth. Eng., 69, 60-86.   DOI   ScienceOn
2 Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, 3rd Edition, McGraw Hill, New York.
3 Wang, J.G., Liu, G.R. and Wu, Y.G. (2001), "A point interpolation method for simulating dissipation process of consolidation", Cornput. Method. Appl. Mech. Eng., 190, 5907-5922.   DOI   ScienceOn
4 Zhang, X., Liu, X.H., Song, K.Z. and Lu, M.W. (2001), "Least-squares collocation meshless method", Int. J. Numer. Meth. Eng., 51(9), 1089-1100.   DOI   ScienceOn
5 Sadeghirad, A. and Mahmoudzadeh Kani, I. (2009) "Modified equilibrium on line method for imposition of Neumann boundary conditions in meshless collocation methods", Commun. Numer. Meth. En., 25, 147-171.   DOI   ScienceOn
6 Sadeghirad, A., Mahmoudzadeh Kani, I., Noorzad, A., Rahimian, M. and Vaziri Astaneh, A. (2010), "Elastic fracture analyses using an enriched collocation method", Arab. J. Sci. Eng., 35, 165-181.
7 Sadeghirad, A., Mahmoudzadeh Kani, I., Rahimian, M. and Vaziri Astaneh, A. (2009), "A numerical approach based on the meshless collocation method in elastodynamics", Acta Mech. Sinica., 25, 857-870.   DOI   ScienceOn
8 Nayroles, B., Touzot, G. and Villon, P. (1992), "Generalizing the finite element method: diffuse approximation and diffuse elements", Comput. Mech., 10, 307-318.   DOI
9 Onate, E., Idelsohn, S., Zienkiewicz, O.C. and Taylor, R.L. (1996), "A finite point method in computational mechanics: applications to convective transport and fluid flow", Int. J. Numer. Meth. Eng., 139, 3839-3866.
10 Perrone, N. and Kao, R. (1975), "A general finite difference method for arbitrary meshes", Comput. Struct., 5, 45-58.   DOI   ScienceOn
11 Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to nonspherical stars", Mon. Not. R. Astron. Soc., 181, 375-389.   DOI
12 Zhu, T., Zhang, J.D. and Atluri, S.N. (1998), "Local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach", Comput. Mech., 21(3), 223-235.   DOI   ScienceOn
13 Lee, S.H. and Yoon, Y.C. (2004), "Meshfree point collocation method for elasticity and crack problems", Int. J. Numer. Meth. Eng., 61, 22-48.   DOI   ScienceOn
14 Liszka, T.J., Duarte, C.A.M. and Tworzydlo, W.W. (1996), "hp-Meshless cloud method", Comput. Meth. Appl. Mech. Eng., 139, 263-288.   DOI
15 Kansa, E.J. (1990), "Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations", Comput. Math. Appl., 19, 147-161.
16 Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37, 141-158.   DOI   ScienceOn
17 Golberg, M.A. (1995), "The method of fundamental solutions for Poisson's equation", Eng. Anal. Bound. Elem., 16, 205-213.   DOI   ScienceOn
18 Chen, W. and Hon, Y.C. (2003), "Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems", Comput. Meth. Appl. Mech. Eng., 192, 1859-1875.   DOI   ScienceOn
19 Cleveland, W.S. (1993), Visualizing Data, AT&T Bell Laboratories, Murry Hill, NJ.
20 De, S. and Bathe, K.J. (2000), "The method of finite spheres", Comput. Mech., 25, 329-349.   DOI   ScienceOn
21 Anderson, T.L. (1991), Fracture Mechanics: Fundamentals and Applications (1st Edition), CRC Press, Boca Raton, FL.
22 Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22, 117-127.   DOI   ScienceOn
23 Liu, G.R., Li, Y. and Dai, K.Y. (2006b), "A linearly conforming radial point interpolation method for solid mechanics problems", Int. J. Comput. Meth., 3, 401-428.   DOI
24 Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256.   DOI   ScienceOn
25 Boroomand, B., Tabatabaei, A.A. and Onate, E. (2005), "Simple modifications for stabilization of the finite point method", Int. J. Numer. Meth. Eng., 63, 351-379.   DOI   ScienceOn
26 Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Meth. Fl., 20, 1081-1106.   DOI   ScienceOn
27 Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astron. J., 82(12), 1013-1024.   DOI
28 Moran, B. and Shih, C.F. (1978), "Crack tip and associated domain integrals from momentum and energy balance", Eng. Fract. Mech., 27, 615-641.
29 Liu, G.R., Dai, K.Y., Han, X. and Li, Y. (2006c), "A mesh-free minimum length method for 2-D problems", Comput. Mech., 38, 533-550.   DOI   ScienceOn
30 Liu, X., Liu, G.R., Tai, K. and Lam, K.Y. (2005), "Radial point interpolation collocation method for the solution of partial differential equations", Comput. Math. Appl., 50, 1425-1442.   DOI   ScienceOn
31 Liu, G.R. and Gu, Y.T. (2001c), "A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids", J. Sound Vib., 246, 29-46.   DOI   ScienceOn
32 Liu, G.R. and Gu, Y.T. (2003), "A meshfree method: meshfree weak-strong (MWS) form method for 2D solids", Comput. Mech., 33, 2-14.   DOI   ScienceOn
33 Liu, G.R., Kee, B.B.T. and Chun, L. (2006a), "A stabilized least-squares radial point collocation method (LSRPCM) for adaptive analysis", Comput. Meth. Appl. Mech. Eng., 195, 4843-4861.   DOI   ScienceOn
34 Liu, G.R. and Gu, Y.T. (2001a), "A point interpolation method for two-dimensional solids", Int. J. Numer. Meth. Eng., 50, 937-951.   DOI   ScienceOn
35 Liu, G.R. and Gu, Y.T. (2001b), "A local point interpolation method for stress analysis of two-dimensional solids", Struct. Eng. Mech., 11, 221-236.   DOI