• Title/Summary/Keyword: membrane system

Search Result 2,409, Processing Time 0.03 seconds

Frequency Characteristics of a Membrane Duct (박막형 소음기의 주파수 특성)

  • 최성훈;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.420-425
    • /
    • 2001
  • Theoretical analysis of noise reduction by a membrane-duct system is presented. When acorn waves propagate in the membrane-duct, the membrane is also excited and its motion is coup with interior medium. It has been shown that propagating waves with supersonic wave speed exist beyond a certain critical frequency that is determined from the mass ratio of the me and the fluid. Also found are subsonic waves which couple strongly wi th the membrane a provide a powerful mechanism of energy dissipation. Existence of an exterior medium alter dispersion characteristics. It provides additional mass loading and reduces the subsort speed further. The effect of mean flow speed on dispersion characteristics is also consider results show that the membrane-duct system can be applied to diminish and absorb 1 frequency noise in duct instead of passive muffler, such as a simple expansion chamber absorption material.

  • PDF

Shape Finding and Stress Analyses of Tension Membrane Structures by using 4-node Isoparametric Elements (4월점 등매개요소를 이용한 인장막구조(引張膜構造)의 형상해석(形狀解析) 및 응력해석(應力解析))

  • Lee, Kyung-Soo;Lee, Hyung-Hoon;Moon, Jeong-Ho;Han, Sang-Eul
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.222-229
    • /
    • 2004
  • This study purports to analyze equally stressed surfaces in tension-membrane structures through a geometrically nonlinear approach. It adopts the formulation of a 4-node quadrilateral isoparametric plane stress element considering the orthotropic characteristic of membrane textures. Tension structures, which include cables and tension membranes, such as a cable dome initially exhibit unstable conditions because no initial internal stiffness such as bending stiffness is present. Such a structural system requires prestressing to the tension members to attain a stable state. A tension-membrane structure retains a stable three dimensional curved surface as a structural shape. This analytical process for finding the geometry is referred to as Shape Finding Analysis. In order to assess the validity of this study, we examine equally stressed surfaces of saddle and catenary shape shell structures and carry out pertinent stress analyses

  • PDF

Performance Test of Proton Exchange Membrane Fuel Cell with the Variation of Operation Condition (이온교환막 연료전지용 막 가습기의 운전 조건에 따른 성능 실험)

  • Bae, Ho-June;Kim, Yong-Mo;Lee, Young-Duk;Yu, Sang-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.6-9
    • /
    • 2008
  • The efficiency and life time of the proton exchange membrane (PEM) fuel cell system is critically changed with its humidity which should be maintained properly during dynamic operation. Membrane humidifier is required to regulate proper humidity level for the design point of the PEMFC system. In this study, we presented the performance of the cylindrical membrane humidifier which is operated as water-to-gas. Dry air pressure, liquid water flow temperature, and air flow rate were chosen as the operating parameters. Humidity level is expressed with dew point.

  • PDF

Fouling Mechanism of Microfiltration/Ultrafiltration by Macromolecules and a Suppression Strategy from the Viewpoint of the Hydration Structure at the Membrane Surface

  • Akamatsu, Kazuki;Nagumo, Ryo;Nakao, Shin-ichi
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.205-212
    • /
    • 2020
  • This short review focuses on fouling by proteins and macromolecules in microfiltration/ultrafiltration. First, an experimental system that enables investigation of how the extent of the adsorption of proteins and macromolecules on membrane surfaces contributes to a decrease in filtrate flux in microfiltration/ultrafiltration is described. Using this system, a causal relationship - not a correlation - indicating that adsorption results in a decrease in filtrate flux could be clearly demonstrated in some cases. Second, a hydration structure at the membrane surface that can suppress adsorption is discussed, inspired by biomaterial research. In their hydrated states, polymers with low-fouling properties have water molecules with a particular structure. Finally, some successful examples of the development of low-fouling membranes via surface modification using low-fouling polymers are discussed.

Dynamic Stability of Liquid in a Spherical Tank Covered with Membrane under Vertical Harmonic Excitation

  • Chiba, Masakatsu;Murase, Ryo;Nambu, Yohsuke;Komatsu, Keiji
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.34-39
    • /
    • 2015
  • Experimental studies were conducted on the liquid sloshing characteristics in a spherical tank covered with a flexible membrane. A spherical acrylic tank with 145.2 mm in radius was used as a test tank, and it was half-filled with water. Silicon membranes with 0.2 mm thickness were used as a test membrane with plane or hemispherical types. The test tank was harmonically excited in a vertical direction by an electro-dynamic exciter. In this case, a parametric instability vibration comes up when the excitation frequency is twice the natural frequency. Parametric instability regions of natural modes were measured for three cases, i.e. liquid surface is free, covered with plane membrane and hemi-spherical membrane.

APPLICATION OF STABLE EMULSIONS TO LIPASE IMMOBILISED MEMBRANE REACTORS FOR KINETIC RESOLUTION OF RACEMIC ESTERS

  • Giorno, Lidietta;Na, Li;Drioli, Enrico
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.65-68
    • /
    • 2003
  • The paper discusses the use of stable emulsion, prepared by membrane emulsification technology, to improve the enantiocatalytic performance of immobilised lipase in multiphasic membrane reactors. The production of optical pure (S)-naproxen from racemic naproxen methyl ester has been used as model reaction system. The enzyme was immobilised in the sponge layer (shell side) of capillary polyamide membrane with 50 kDa cut-off, The O/W emulsion, containing the substrate in the organic dispersed phase, was fed to the enzyme membrane reactor from shell-to-lumen. The results evidenced that lipase maintained stable activity during all the operation time (more than 250 hours), showing an enantiomeric excess (96 $\pm$2%) comparable to the free enzyme (98 $\pm$ 1%) and much higher compared to similar lipase-loaded membrane reactors used in two-separate phase systems (90%). The study showed that immobilised enzymes can achieve high stability as well as high catalytic activity and enantioselectivity.

  • PDF

A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane (기체분리용 고분자 멤브레인의 최근 개발 동향)

  • Kim, Tae-Heon;Jeong, Jung-Chae;Park, Jong-Man;Woo, Chang-Hwa
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.267-277
    • /
    • 2010
  • Gas separation membranes have been developed for decades in various areas to replace the conventional processes. Membrane processes for gas separation have many advantages of energy saving, compact size, and easy scale-up. Nowadays, gas separation processes is widely spreaded in nitrogen generating system, hydrogen generating system, membrane dryer, on board inert gas generating system, natural gas purification, biogas purification and fuel cells. Carbon dioxide separation process using membrane would be a strong candidate of carbon dioxide capturing process. In order to broaden the scope of application of gas separation membranes, development of new materials which can overcome the borderline of Robeson's plot should be necessary, so that many researchers and companies are trying to develop the new materials like polymers containing cardo and spiro group and PIMs (polymers for intrinsic microporosity).

Forward osmosis membrane filtration for microalgae harvesting cultivated in sewage effluent

  • Kim, Su-Bin;Paudel, Sachin;Seo, Gyu Tae
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.99-104
    • /
    • 2015
  • The purpose of this study is to evaluate the performance of forward osmosis (FO) system for harvesting microalgae cultivated in secondary sewage effluent. Microalgae species used in this study were chlorella sp. ADE4. The drawing agents used for forward osmosis system were seawater and concentrate of sea water reverse osmosis (SWRO) system. Chlorella sp. ADE4 cultured in secondary sewage effluent illustrated moderate efficiency in removal of total nitrogen (TN) (68%) and superior performance in total phosphorus (TP) removal (99%). Comparison of seawater and SWRO concentrate as drawing agent were made in FO membrane separation of the microalgae. The result from this study depicts that SWRO concentrate is strong drawing agent in FO membrane system providing an average dewatering rate of $4.8L/(m^2{\cdot}hr)$ compared to seawater with average dewatering of $2.9L/(m^2{\cdot}hr)$. Results obtained from this study indicated that FO system could be viable option for harvesting the microalgae for further biodiesel production. SWRO concentrate as a drawing agent could be very important finding in field of membrane technology for disposal of SWRO concentrate.

Optimization of Membrane Separation System for Carbon Dioxide Recovery from Combustion Gases (연소기체로부터 이산화탄소 회수를 위한 막 분리 공정의 최적화)

  • Han, Myungwan;Kim, Miyoung;Kim, Beom-Sik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.222-229
    • /
    • 2005
  • Five stage enriching membrane system for separating combustion gas (air 90%, $CO_2$ 10%) was proposed and simulated by using Aspen plus and Excel. The system recovers 90% $CO_2$ of the combustion gas and the purity of $CO_2$ recovered was more than 99%. Optimization yields a reduction in membrane area as well as operating and capital cost. Retentate concentration and permeate pressure of each stage were chosen as optimization variables. By analyzing the optimization results, we derived several design guide lines for the enriching membrane system.

Preparation of Ampholyte Grafted Hollow-fiber Membrane and Its Adsorption Characteristic on Metallic Ions (양성전해질 고정막의 제조 및 그것의 금속이온 흡착 특성)

  • Choi, Hyuk-Jun;Park, Sang-Jin;Kim, Min
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.151-158
    • /
    • 2010
  • This paper presents the synthesis of ampholyte immobilized hollow-fiber membranes and adsorption characteristic of metallic ions. This is prepared by radiation induced grafting polymerization of an epoxy group containing Glycidyl methacrylate (GMA) onto an existing polyethylene porous hollow-fiber membrane. Ampholyte ion-exchanged alkalic group, $-NH_2$ (amine function) of Taurine (TAU) is reacted with glycidyl of GMA for the synthesis of stable membrane. However, Sodium sulfite (SS) membrane is also prepared by making chemical bonds with GMA of porous hollow-fiber membrane for the comparison of adsorption characteristic of metallic ions. These are called as TAU and SS membranes, respectively. It is shown that TAU membrane shows a steady flux, 0.9 m/h regardless of the density of TAU, while the flux of SS membrane decreases rapidly as the density of $SO_3H$ group increases. SS membrane showed a negligible flux. TAU membrane with the density 0.8 mmol/g shows the amount of metallic ions adsorbed in the following order, Cu > Cd > Mg > Sb > Pb. In general, TAU membrane with high density and reaction time showed the high amount of metallic ions adsorbed and flux.