Browse > Article

A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane  

Kim, Tae-Heon (Korea Evaluation Institute of Industrial Technology)
Jeong, Jung-Chae (Korea Evaluation Institute of Industrial Technology)
Park, Jong-Man (Korea Evaluation Institute of Industrial Technology)
Woo, Chang-Hwa (Korea Evaluation Institute of Industrial Technology)
Publication Information
Membrane Journal / v.20, no.4, 2010 , pp. 267-277 More about this Journal
Abstract
Gas separation membranes have been developed for decades in various areas to replace the conventional processes. Membrane processes for gas separation have many advantages of energy saving, compact size, and easy scale-up. Nowadays, gas separation processes is widely spreaded in nitrogen generating system, hydrogen generating system, membrane dryer, on board inert gas generating system, natural gas purification, biogas purification and fuel cells. Carbon dioxide separation process using membrane would be a strong candidate of carbon dioxide capturing process. In order to broaden the scope of application of gas separation membranes, development of new materials which can overcome the borderline of Robeson's plot should be necessary, so that many researchers and companies are trying to develop the new materials like polymers containing cardo and spiro group and PIMs (polymers for intrinsic microporosity).
Keywords
gas separation; membrane; nitrogen generation; oxygen generation; on-board inert gas generation system;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. A. Stern, B. Krishnakumar, S. G. Charati, W. S. Amato, A. A. Friedman, and D. J. Fuess, "Performance of a bench-scale membrane pilot plant for the upgrading of biogas in a wastewater treatment plant", J. Membr. Sci., 151, 63 (1998).   DOI   ScienceOn
2 http://www.esru.strath.ac.uk/EandE/Web_sites/99-00/bio_fuel_cells/groupproject/use-of-biofuels/text.html.
3 C. K. Yi, "Advances of Carbon Capture Technology", KIC News, 12, 30 (2009).
4 J. H. Park and I. H. Baek, "Status and Prospect of Pre-combustion $CO_{2}$ Capture Technology", NICE, 27, 151 (2009).
5 B. M. Min, "Status of $CO_{2}$ Capturing Technologies in Post Combustion", KIC News, 12, 15 (2009).
6 J. J. Marano and J. P. Ciferino, "Integration of Gas Separation Membranes with IGCC Identifying the right membrane for the right job", Energy Procedia, 1, 361 (2009).   DOI   ScienceOn
7 E. Favre, "Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption?", J. Membr. Sci., 294, 50 (2007).   DOI   ScienceOn
8 H. Lin and B. D. Freeman, "Materials selection guidelines for membranes that remove $CO_{2}$ from gas mixtures", J. Mol. Struct., 739, 57 (2005).   DOI   ScienceOn
9 http://www.tiresavernitrogen.com/products-automobile.html.
10 T. Sasaki, H. Harada, and A. Hogetsu, "Methods and apparatuses for producing high purity oxygen and hydrogen", US Pat., 5,484,512, January 16 (1996).
11 H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254 (2007).   DOI   ScienceOn
12 http://www.isgspa.com/membrane.html.
13 G. T. Cartwright and K. R. Clark, "Molecular sieve and membrane system to purify natural gas", US Pat., 7,575,624, August 18 (2009).
14 J. W. Rhim, H. Y. Hwang, S. Y. Ha, and S. Y. Nam, "Application and Development of Dehumidification Systems-Focusing on Membrane Dryer", Membrane Journal, 14, 1 (2004).   과학기술학회마을
15 I. Kashkoush, R. Novak, and L. Myland, "Membrane Dryer", US Pat., Applicaition, 0183338 A1, February 10 (2003).
16 http://www.airrane.com.
17 L. M. Robeson, "Polymer membranes for gas separation", Curr. Opin. Solid State Mat. Sci., 4, 549 (1999).   DOI   ScienceOn
18 L. M. Robeson, B. D. Freeman, D. R. Paul, and B. W. Rowe, "An empirical correlation of gas permeability and permselectivity in polymers and its theoretical basis", J. Membr. Sci., 341, 178 (2009).   DOI   ScienceOn
19 L. M. Robeson, H. H. Hwu, and J. E. McGrath, "Upper bound relationship for proton exchange membranes: Empirical relationship and relevance of phase separated blends", J. Membr. Sci., 302, 70 (2007).   DOI   ScienceOn
20 E. Favre, R. Bounaceur, and D. Roizard, "Biogas, membranes and carbon dioxide capture", J. Membr. Sci., 328, 11 (2009).   DOI   ScienceOn
21 D. Antoni, V. V. Zverlov, and W. H. Schwarz, "Biofuels from microbes", Appl. Microbiol. Biotechnol., 77, 23 (2007).   DOI   ScienceOn
22 M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel, and A. G. Chmielewski, "Application of polyimide membranes for biogas purification and enrichment", J. Hazard. Mater., 144, 698 (2007).   DOI   ScienceOn
23 R. Spillman, "Economics of gas separation membrane processes", Membrane Science and Technology, 2, 589 (1995).   DOI
24 A. Ito, "Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane", J. Membr. Sci., 175, 35 (2000).   DOI   ScienceOn
25 http://www.honeywell.com.
26 S. Yadvika, T. R. Sreekrishnan, S. Kohli, and V. Rana, "Enhancement of biogas production from solid substrates using different techniques-a review", Bioresour. Technol., 95, 1 (2004).   DOI   ScienceOn
27 R. Rautenbach and W. Dahm, "Oxygen and methane enrichment - a comparison of module arrangements in gas permeation", Chem. Eng. Technol., 10, 256 (1987).   DOI   ScienceOn
28 S. H. Han, H. B. Park, and Y. M. Lee, "Recent Technology Trends of Polymeric Gas Separation Membranes", Polymer Science and Technology, 19, 284 (2008).
29 http://www.igskorea.co.kr/generon/characteristics.html.