A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane

기체분리용 고분자 멤브레인의 최근 개발 동향

  • 김태헌 (한국산업기술평가관리원) ;
  • 정종채 (한국산업기술평가관리원) ;
  • 박종만 (한국산업기술평가관리원) ;
  • 우창화 (한국산업기술평가관리원)
  • Received : 2010.12.29
  • Accepted : 2010.12.29
  • Published : 2010.12.30

Abstract

Gas separation membranes have been developed for decades in various areas to replace the conventional processes. Membrane processes for gas separation have many advantages of energy saving, compact size, and easy scale-up. Nowadays, gas separation processes is widely spreaded in nitrogen generating system, hydrogen generating system, membrane dryer, on board inert gas generating system, natural gas purification, biogas purification and fuel cells. Carbon dioxide separation process using membrane would be a strong candidate of carbon dioxide capturing process. In order to broaden the scope of application of gas separation membranes, development of new materials which can overcome the borderline of Robeson's plot should be necessary, so that many researchers and companies are trying to develop the new materials like polymers containing cardo and spiro group and PIMs (polymers for intrinsic microporosity).

가스분리막을 이용한 분리공정은 기존의 분리공정을 대체할 공정으로서 수십 년간 발전이 되어 왔다. 특히 분리막 공정은 가스분리에 있어서 기존공정에 비해서 에너지 소모가 적고 설치에 필요한 공간이 간소하며, 스케일업이 간단한 장점이 있다. 최근에는 기체분리막 공정은 질소발생장치, 수소발생장치, 막제습기, 선박이나 항공기용 불활성기체충진장치, 천연가스 정제, 바이오가스 정제, 연료전지분야에서 널리 사용이 되고 있으며, 향후에는 이산화탄소의 분리에도 강력한 대체공정으로 사용이 될 수 있다. 이러한 가스분리막 공정을 좀 더 널리 보급하기 위해서는 로베슨 플롯의 한계를 넘어설 수 있는 새로운 소재의 개발이 절실하며, 이러한 한계를 돌파하기 위하여 많은 연구자와 회사들이 카도그룹이나 스피로 구조를 가지는 고분자나 PIMs 같은 소재의 개발에 박차를 가하고 있다.

Keywords

References

  1. http://www.airrane.com.
  2. L. M. Robeson, "Polymer membranes for gas separation", Curr. Opin. Solid State Mat. Sci., 4, 549 (1999). https://doi.org/10.1016/S1359-0286(00)00014-0
  3. L. M. Robeson, B. D. Freeman, D. R. Paul, and B. W. Rowe, "An empirical correlation of gas permeability and permselectivity in polymers and its theoretical basis", J. Membr. Sci., 341, 178 (2009). https://doi.org/10.1016/j.memsci.2009.06.005
  4. L. M. Robeson, H. H. Hwu, and J. E. McGrath, "Upper bound relationship for proton exchange membranes: Empirical relationship and relevance of phase separated blends", J. Membr. Sci., 302, 70 (2007). https://doi.org/10.1016/j.memsci.2007.06.029
  5. E. Favre, R. Bounaceur, and D. Roizard, "Biogas, membranes and carbon dioxide capture", J. Membr. Sci., 328, 11 (2009). https://doi.org/10.1016/j.memsci.2008.12.017
  6. http://www.igskorea.co.kr/generon/characteristics.html.
  7. S. H. Han, H. B. Park, and Y. M. Lee, "Recent Technology Trends of Polymeric Gas Separation Membranes", Polymer Science and Technology, 19, 284 (2008).
  8. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254 (2007). https://doi.org/10.1126/science.1146744
  9. http://www.isgspa.com/membrane.html.
  10. G. T. Cartwright and K. R. Clark, "Molecular sieve and membrane system to purify natural gas", US Pat., 7,575,624, August 18 (2009).
  11. J. W. Rhim, H. Y. Hwang, S. Y. Ha, and S. Y. Nam, "Application and Development of Dehumidification Systems-Focusing on Membrane Dryer", Membrane Journal, 14, 1 (2004).
  12. I. Kashkoush, R. Novak, and L. Myland, "Membrane Dryer", US Pat., Applicaition, 0183338 A1, February 10 (2003).
  13. T. Sasaki, H. Harada, and A. Hogetsu, "Methods and apparatuses for producing high purity oxygen and hydrogen", US Pat., 5,484,512, January 16 (1996).
  14. R. Spillman, "Economics of gas separation membrane processes", Membrane Science and Technology, 2, 589 (1995). https://doi.org/10.1016/S0927-5193(06)80015-X
  15. A. Ito, "Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane", J. Membr. Sci., 175, 35 (2000). https://doi.org/10.1016/S0376-7388(00)00404-X
  16. http://www.honeywell.com.
  17. S. Yadvika, T. R. Sreekrishnan, S. Kohli, and V. Rana, "Enhancement of biogas production from solid substrates using different techniques-a review", Bioresour. Technol., 95, 1 (2004). https://doi.org/10.1016/j.biortech.2004.02.010
  18. D. Antoni, V. V. Zverlov, and W. H. Schwarz, "Biofuels from microbes", Appl. Microbiol. Biotechnol., 77, 23 (2007). https://doi.org/10.1007/s00253-007-1163-x
  19. S. A. Stern, B. Krishnakumar, S. G. Charati, W. S. Amato, A. A. Friedman, and D. J. Fuess, "Performance of a bench-scale membrane pilot plant for the upgrading of biogas in a wastewater treatment plant", J. Membr. Sci., 151, 63 (1998). https://doi.org/10.1016/S0376-7388(98)00238-5
  20. R. Rautenbach and W. Dahm, "Oxygen and methane enrichment - a comparison of module arrangements in gas permeation", Chem. Eng. Technol., 10, 256 (1987). https://doi.org/10.1002/ceat.270100131
  21. M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel, and A. G. Chmielewski, "Application of polyimide membranes for biogas purification and enrichment", J. Hazard. Mater., 144, 698 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.098
  22. http://www.esru.strath.ac.uk/EandE/Web_sites/99-00/bio_fuel_cells/groupproject/use-of-biofuels/text.html.
  23. C. K. Yi, "Advances of Carbon Capture Technology", KIC News, 12, 30 (2009).
  24. J. H. Park and I. H. Baek, "Status and Prospect of Pre-combustion $CO_{2}$ Capture Technology", NICE, 27, 151 (2009).
  25. B. M. Min, "Status of $CO_{2}$ Capturing Technologies in Post Combustion", KIC News, 12, 15 (2009).
  26. J. J. Marano and J. P. Ciferino, "Integration of Gas Separation Membranes with IGCC Identifying the right membrane for the right job", Energy Procedia, 1, 361 (2009). https://doi.org/10.1016/j.egypro.2009.01.049
  27. E. Favre, "Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption?", J. Membr. Sci., 294, 50 (2007). https://doi.org/10.1016/j.memsci.2007.02.007
  28. H. Lin and B. D. Freeman, "Materials selection guidelines for membranes that remove $CO_{2}$ from gas mixtures", J. Mol. Struct., 739, 57 (2005). https://doi.org/10.1016/j.molstruc.2004.07.045
  29. http://www.tiresavernitrogen.com/products-automobile.html.