Preparation of Ampholyte Grafted Hollow-fiber Membrane and Its Adsorption Characteristic on Metallic Ions

양성전해질 고정막의 제조 및 그것의 금속이온 흡착 특성

  • Choi, Hyuk-Jun (Department of safety environmental system engineering, Dongguk University) ;
  • Park, Sang-Jin (Department of Chemical and Biochemical engineering, Dongguk University) ;
  • Kim, Min (Department of safety environmental system engineering, Dongguk University)
  • 최혁준 (동국대학교 안전환경시스템공학과) ;
  • 박상진 (동국대학교 화학생명공학과) ;
  • 김민 (동국대학교 안전환경시스템공학과)
  • Received : 2010.06.11
  • Accepted : 2010.06.21
  • Published : 2010.06.30

Abstract

This paper presents the synthesis of ampholyte immobilized hollow-fiber membranes and adsorption characteristic of metallic ions. This is prepared by radiation induced grafting polymerization of an epoxy group containing Glycidyl methacrylate (GMA) onto an existing polyethylene porous hollow-fiber membrane. Ampholyte ion-exchanged alkalic group, $-NH_2$ (amine function) of Taurine (TAU) is reacted with glycidyl of GMA for the synthesis of stable membrane. However, Sodium sulfite (SS) membrane is also prepared by making chemical bonds with GMA of porous hollow-fiber membrane for the comparison of adsorption characteristic of metallic ions. These are called as TAU and SS membranes, respectively. It is shown that TAU membrane shows a steady flux, 0.9 m/h regardless of the density of TAU, while the flux of SS membrane decreases rapidly as the density of $SO_3H$ group increases. SS membrane showed a negligible flux. TAU membrane with the density 0.8 mmol/g shows the amount of metallic ions adsorbed in the following order, Cu > Cd > Mg > Sb > Pb. In general, TAU membrane with high density and reaction time showed the high amount of metallic ions adsorbed and flux.

본 연구는 양성전해질막의 금속이온 특성을 조사하기 위하여 Taurine (TAU)막을 제조하였다. 제조방법으로는 방사선조사법에 의한 Glycidyl methacrylate (GMA)의 중공사막 표면위에 고정시키고, 이후 Taurine의 염기성 부분인 $-NH_2$기(amine fuction)와 GMA의 glycididyl의 개환 반응을 통하여 안정된 막을 형성하도록 하였다. 한편 TAU막과 비교를 위해 GMA가 고정된 중공사 막에 Sodium sulfite로 화학적 결합을 형성 SS막을 제조하였다. 이렇게 제조된 TAU막의 타우린 밀도가 높아져도 투과유속은 0.9 m/h로 변화 없으나, SS막은 술폰산기의 밀도가 높아짐에 따라 투과유속이 급격히 감소하는 것을 나타내었다. 타우린 밀도가 0.8 mmol/g인 막을 사용한 결과 금속이온의 량은 Cu > Cd > Mg > Sb > Pb의 순으로 나타내었다. 전반적으로 타우린막은 전화율과 밀도의 증가에 따라 많은 양의 금속이온 흡착과 높은 투과유속을 나타내었다.

Keywords

References

  1. M. Kim, J. Kojima, K. Saito, and S. Furusaki, "Reduction of nonselective adsorption of proteins by hydrophilization of microfiltration membranes by radiation-induced grafting", Biotechnol. Prog., 10, 114 (1994). https://doi.org/10.1021/bp00025a013
  2. M. K. Song, Y. S. Cho, and W. K. Yang, "Electrochemical Characteristics of Ion-exchange membrane and Charged Mosaic Membrane", Membrane Journal, 17(1), 37 (2007).
  3. M. S. Kang, Y. J. Choi, and S. H. Moon, "Effects of Immobilized Bipolar Interface Fonned by Multivalent and Large Molecular Ions on Electrodialytic Water Spliting at Cation-Exchange Membrane Surface", Membrane Journal, 13(3), 143 (2003).
  4. K. Saito, S. Tsuneda, M. Kim, N Kubota, K. Sugita, and T. Sugo, "Radiation-induced graft polymerization is the key to develop highperfonnance functional materials for protein purification", Rad Phys. Chem., 54, 517 (1999). https://doi.org/10.1016/S0969-806X(98)00256-4
  5. H. S. Hwang, Y. J. Kim, S. Y. Nam, and J. W. Rhim, "Preparation of PAV/P AM/Zirconium phosphate Membrane for Proton Exchange Membranes," Membrane Journal, 14(2), 117 (2004).
  6. S. Tsuneda, K. Saito, S. Fmusaki, and T. Sugo, "High-throughput processing of proteins using aporous and tentacle anion-exchange membrane", J. Chromatogr, A, 689, 211 (1995). https://doi.org/10.1016/0021-9673(94)00911-R
  7. K. Saito, "Charged polymer brush grafted onto porous hollow-fiber membrane improves separation and reaction in biotechnology", Sep. Sci. Technol., 37, 535 (2002). https://doi.org/10.1081/SS-120001446
  8. H. J. Choi, K. S. Yang, K. B. Heo, B. S. Kim, and M. Kim, "Adsorption characteristic of ammonia by the cation-exchange membrane", Membrane Journal, 17(1), 54 (2007).
  9. K. Miyoshi, K. saito, T. Shiraishi, and T. Sugo, "Introduction of taurine into polymer brush grafted onto porous hollw-fiber membrane", J. Membr. Sci., 264, 97 (2005). https://doi.org/10.1016/j.memsci.2005.04.025
  10. N. Sasagawa, K. Saito, K. Sugita, S. Kunori, and T. Sugo, "Ionic crosslinking of $SO_3$H-group-containing graft chains helps to capture lysozyme in a permeation mode", J. Chromatogr. A, 848, 161 (1999). https://doi.org/10.1016/S0021-9673(99)00500-2
  11. T. Kawai, K. Satio, K. Sugita, and T. Sugo, Extension and shrinkage of polymer brush grafted onto porous membrane induced by protein binding, Macromolecules, 33, 1306 (2000). https://doi.org/10.1021/ma9819642
  12. J. H. Kim, W. J. Na, B. S. Kim, and M. Kim, "Chiral separation of tryptophan by immobilized BSA (bovine serum albumin) membrane", Membrane Journal, 16, 133 (2006).
  13. G. Q. Li, S. Konishi, K. Saito, and T. Sugo, "High collection rate of Pd in hydrochloric acid medium using chelating microporous membrane", J. Membr. Sci., 95, 63 (1994). https://doi.org/10.1016/0376-7388(94)85029-1
  14. H. Shinano, S. Tsuneda, K. Saito, and S. Fmusaki, "Ion exchange of lysozyme during permeation across a microporous sulfopropyl-group-containing hollow fiber", Biotechnol. Prog., 9, 193 (1993). https://doi.org/10.1021/bp00020a012
  15. K. Y. Jung, "Synthesis and characteristics of sulfonic acid type ion-exchange membranes by radiation-induced graft polymerization", Dongguk Univ. Pr. (1999).