• Title/Summary/Keyword: membrane charge

Search Result 207, Processing Time 0.021 seconds

Synthesis and Characterization of Sulfonated Polyetherimide (Sulfonated Polyetherimide 합성 및 특성)

  • 김완주;최남석;최중구;김인철;김종호;탁태문
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 1999
  • In this study, polyetherimide with pellet state was sulfonated with a chlorosulfonic acid. The volume ratio of carbon tetrachloride (CCI$_4$/1,2-dichloroethane (DCE) was 5/1. Therefore, sulfonated polyetherimide of anionic charge and more hydrophilicity were produced. The optimum reaction conditions of sulfonation were that PES/CSA mole ratio was I/I, temperature were lO$^{\circ}$ and reaction time were 3hr. SPEls having ion capacity in the range of 0.2-1.2meq/mg were synthesized. Through FT-IR, sulfonic acid peak was shown at 1020cm$^{-1}$ and 1170cm$^{-1}$ Polymer dispersity index was broad and we confirmed that PEl was hydrophilzed in the measure of contact angle.

  • PDF

PEMFC performance on reverse voltage by fuel starvation (연료 부족에 의한 고분자전해질형 연료전지의 역전압 성능)

  • Lee, Hung-Joo;Song, Hyun-Do;Kim, Jun-Bom
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.133-140
    • /
    • 2006
  • The performance of proton exchange membrane fuel cell was decreased by reverse voltage using fuel starvation. Performance decrease in local area could be affected by duration and extent of reverse voltage. Hydrogen and air stoichiometic ratio was used to find the experimental condition of abrupt voltage decrease. LabVIEW was used to make control logic of automatic load off system in preset voltage. Reverse voltage experiment was done down to -1.2 V at constant current condition. When fuel cell voltage was reached to preset voltage, electronic load was disconnected to make open circuit voltage for 1 minute. Fuel cell performance was checked every 5 cycle and the degree of performance decrease and/or recovery was estimated. Ohmic resistance and charge transfer resistance were increased and platinum surface area was reduced 41% after reverse voltage experiment.

A Study of Electrospun PVDF on PET Sheet

  • Chanunpanich, Noppavan;Lee, Byung-Soo;Byun, Hong-Sik
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.212-217
    • /
    • 2008
  • PVDF ($Kynar^{(R)}$ 761) nanofibers were made by electrospinning with an external voltage of 6-10 kV, a traveling distance of 7-15 cm and a flow rate of 0.4-1 mL/h. Although the mean diameter of the fibers has not changed significantly, the conditions affected the change in diameter distribution. This was attributed to interactions, both attraction and repulsion, between the positive charges on the polymer solutions and the electrically grounded collector. Higher voltages and traveling distance increased the level of attraction between the positive charge on the polymer solution and the electrically grounded collector, resulting in a narrow diameter distribution, In addition, a high flow rate allowed a high population of uniformly charged solutions to travel to the grounded collector, which resulted in a narrow diameter distribution. The optimum conditions for electrospinning of PVDF in DMAc/acetone (3/7 by wt) were a collector voltage of 6 kV, a syringe tip to collector of 7 cm, a flux rate of 0.4 mL/h and 10 kV, 10 cm, 1 mL/h, Since PVDF is widely used as a filtration membrane, it was electrospun on a PET support with a rotating drum as a grounded collector. Surprisingly, some straight nanofibers were separated from the randomly deposited nanofibers. The straight nanofiber area was transparent, while the randomly deposited nanofiber area was opaque. Both straight nanofibers and aligned nanotibers could be obtained by manipulating the PET drum collector. These phenomena were not observed when the support was changed to an Al sheet. This suggests that a pseudo dual collector was generated on the PET sheet. No negative charge was created because the PET sheet was not a conductive material. However, less charge was created when the sheet was not perfectly attached to the metal drum. Hence, the nanotibers jumped from one grounded site to the nearest one, yielding a straight nanofiber.

The Effect of Surfactant on Controlled Release of Amino acids Through Poly(2-Hydroxyethyl Methacrylate) Membrane (Poly(2-Hydroxyethyl Methacrylate)막을 통한 아미노산의 방출 조절에 대한 계면활성제의 효과)

  • Kim Ui-Rak;Jeong Bong-Jin;Lee Myung-Jae;Min Kyung-Sub
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.22-35
    • /
    • 1993
  • The transport phenomena of the free amino acids through poly(hydroxyethyl methacrylate)[P(HEMA)] have been investigated with and without various kinds of surfactants solution and in the mixed surfactants solution. Glutamine has the highest diffusivity among 4 amino acids at 1CMC of cetyldimethylethylammonium bromide(CTABr) surfactant. Glutamic acid is not affected by the concentration of CTABr. Methionine and Lysine shows slight decreased diffusivity at 0.5 CMC, but increase its diffusivity at 1CMC and 2CMC due to the structure change of membrane and the viscosity change of surfactant solution. Glutamic acid has the highest diffusivity among four amino acids at sodium dodecyl sulfate(SDS) and Triton X-100 surfactant. In mixed surfactant solution, each amino acids shows high diffusivity through 45% water content membrane at the 0.5 mole fraction of SDS in the SDS/TX-100 surfactant mixtures. It has been found that not only the property of membrane but also the effects of solute-solvent interactions and solvent effect are very important as the permeation of amino acids occurs through P(HEMA) membrane. The diffusivities of free amino acids through membrane depend upon their molecular shape, size and charge.

  • PDF

Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles

  • Jung, Hyun-Ho;Yang, Sung-Tae;Sim, Ji-Yeong;Lee, Seung-Kyu;Lee, Ju-Yeon;Kim, Ha-Hyung;Shin, Song-Yub;Kim, Jae-Il
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.362-368
    • /
    • 2010
  • Dermcidin is a human antibiotic peptide that is secreted by the sweat glands and has no homology to other known antimicrobial peptides. As an initial step toward understanding dermcidin's mode of action at bacterial membranes, we used homonuclear and heteronuclear NMR to determine the conformation of the peptide in 50% trifluoroethanol solution. We found that dermcidin adopts a flexible amphipathic $\alpha$-helical structure with a helix-hinge-helix motif, which is a common molecular fold among antimicrobial peptides. Spin-down assays of dermcidin and several related peptides revealed that the affinity with which dermcidin binds to bacterial-mimetic membranes is primarily dependent on its amphipathic $\alpha$-helical structure and its length (>30 residues); its negative net charge and acidic pI have little effect on binding. These findings suggest that the mode of action of dermcidin is similar to that of other membrane-targeting antimicrobial peptides, though the details of its antimicrobial action remain to be determined.

Development of capacitive Micromachined Ultrasonic Transducer (III) - Performance Test (미세가공 정전용량형 초음파 탐촉자 개발(III) - 탐촉자 성능평가)

  • Kim, Ki-Bok;Ahn, Bong-Young;Park, Hae-Won;Kim, Young-Joo;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.581-589
    • /
    • 2004
  • In this study, the capacitive micromachined ultrasonic transducer(cMUT) was developed based on the previous research results. The cross sectional image of the developed cMUT was characterized. To measure the membrane displacement of the cMUT, the Michelson phase modulation fiber interferometer was constructed. The measured membrane displacement was in good agreement with the result of the finite element analysis. To estimate the ultrasonic wave generated by the cMUT, an ultrasonic system including a pulser, receiver and charge amplifier was used. The cMUT developed in this study shows a good performance and hence will be widely used in the non-contact ultrasonic applications.

Model Based Hardware In the Loop Simulation of Thermal Management System for Performance Analysis of Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지 특성 해석을 위한 열관리 계통 모델 기반 HILS 기초 연구)

  • Yun, Jin-Won;Han, Jae-Young;Kim, Kyung-Taek;Yu, Sang-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • A thermal management system of a proton exchange membrane fuel cell is taken charge of controlling the temperature of fuel cell stack by rejection of electrochemically reacted heat. Two major components of thermal management system are heat exchanger and pump which determines required amount of heat. Since the performance and durability of PEMFC system is sensitive to the operating temperature and temperature distribution inside the stack, it is necessary to control the thermal management system properly under guidance of operating strategy. The control study of the thermal management system is able to be boosted up with hardware in the loop simulation which directly connects the plant simulation with real hardware components. In this study, the plant simulation of fuel cell stack has been developed and the simulation model is connected with virtual data acquisition system. And HIL simulator has been developed to control the coolant supply system for the study of PEMFC thermal management system. The virtual data acquisition system and the HIL simulator are developed under LabVIEWTM Platform and the Simulation interface toolkit integrates the fuel cell plant simulator with the virtual DAQ display and HIL simulator.

Aminopropyl Functionalized Silica Nanoparticle Dispersed Nafion Composite Membranes for Vanadium Redox Flow Batteries (아미노프로필 관능기를 갖는 실리카 나노 입자가 분산된 나피온 복합막을 이용한 바나듐 레독스 흐름 전지)

  • Lee, Doohee;Yu, Duk Man;Yoon, Sang Jun;Kim, Sangwon;So, Soonyong;Hong, Young Taik
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.307-318
    • /
    • 2020
  • Conventional perfluorinated sulfonic acid membrane, Nafion is widely used for vanadium redox flow battery (VRFB). It is desired to prevent vanadium ion permeation through a membrane to retain the capacity, and to keep the cell efficiency of a VRFB. Highly proton conductive and chemically stable Nafion membranes, however, suffer from high vanadium permeation, which induce the reduction in charge and discharge capacity by side reactions of vanadium ions. In this study, to resolve the issue, silica nanoparticles, which are functionalized with 3-aminopropyl group (fS) are introduced to enhance the long-term performance of a VRFB by lowering vanadium permeation. It is expected that amine groups on silica nanoparticles are converted to positive ammonium ion, which could deteriorate positively charged vanadium ions' crossover by Gibbs-Donnan effect. There is reduction in proton conductivity may due to acid-base complexation between fS and Nafion side chains, but ion selectivity of proton to vanadium ion is enhanced by introducing fS to Nafion membranes. With the composite membranes of Nafion and fS, VRFBs maintain their discharge capacity up to 80% at a high current density of 150 mA/㎠ during 200 cycles.

Effect of O2 Plasma Treatment on Electrochemical Performance of Supercapacitors Fabricated with Polymer Electrolyte Membrane (고분자 전해질막으로 제조한 슈퍼커패시터의 전기화학적 특성에 대한 산소 플라즈마 처리 영향)

  • Moon, Seung Jae;Kim, Young Jun;Kang, Du Ru;Lee, So Youn;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.43-49
    • /
    • 2022
  • Solid-state supercapacitors with high safety and robust mechanical properties are attracting global attention as next-generation energy storage devices. As an electrode of a supercapacitor, an economical carbon-based electrode is widely used. However, when an aqueous electrolyte is introduced, the charge transfer resistance increases because the interfacial contact between the hydrophobic electrode surface and aqueous electrolyte is not good. In this regard, we propose a method to obtain higher electrochemical performance based on improved interfacial properties by treating the electrode surface with oxygen plasma. The surface hydrophilization induced by the enriched oxygen functionalities was confirmed by the contact angle measurement. As a result, the degree of hydrophilization was easily adjusted by controlling the power and duration of the oxygen plasma treatment. As the electrolyte of the supercapacitor, PVA/H3PO4, which is a typical solid-state aqueous electrolyte, was used. Free-standing membranes of PVA/H3PO4 electrolyte were prepared and then pressed onto the electrode. The optimal condition was to perform oxygen plasma treatment for 5 seconds with a low power of 15 W, and the energy density of the supercapacitor increased by about 8%.

The development of complex electrode for fuel cell using CNT (CNT를 이용한 PEMFC 연료전지용 복합전극 개발)

  • Ok, Jinhee;Altalsukh, Dorjgotov;Rhee, Junki;Park, Sangsun;Shul, Yonggun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.135.2-135.2
    • /
    • 2010
  • Carbon nanotube(CNT) has been spotlighted as a promising candidate for catalyst support material for PEMFC (proton exchange membrane fuel cell). The considerable properties of CNT include high surface area, outstanding thermal, electrical conductivity and mechanical stability. In this study, to fully utilize the properties of CNTs, we prepared directly oriented CNT on carbon paper as a catalyst support in the cathode electrode. The CNT layer was prepared by a chemical vapor deposition(CVD) process. And the Pt particles were deposited on the CNT oriented carbon paper by impregnation and eletro-deposition method. The potential advantages of directly oriented CNT on carbon paper can include improved thermal and charge transfer through direct contact between the electrolyte and the electrode and enhanced exposure of Pt catalyst sites during the reaction.

  • PDF