Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.5.362

Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles  

Jung, Hyun-Ho (Department of Life Science, Gwangju Institute of Science and Technology)
Yang, Sung-Tae (Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health)
Sim, Ji-Yeong (Department of Life Science, Gwangju Institute of Science and Technology)
Lee, Seung-Kyu (Department of Life Science, Gwangju Institute of Science and Technology)
Lee, Ju-Yeon (Department of Life Science, Gwangju Institute of Science and Technology)
Kim, Ha-Hyung (College of Pharmacy, Chung-Ang University)
Shin, Song-Yub (Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University)
Kim, Jae-Il (Department of Life Science, Gwangju Institute of Science and Technology)
Publication Information
BMB Reports / v.43, no.5, 2010 , pp. 362-368 More about this Journal
Abstract
Dermcidin is a human antibiotic peptide that is secreted by the sweat glands and has no homology to other known antimicrobial peptides. As an initial step toward understanding dermcidin's mode of action at bacterial membranes, we used homonuclear and heteronuclear NMR to determine the conformation of the peptide in 50% trifluoroethanol solution. We found that dermcidin adopts a flexible amphipathic $\alpha$-helical structure with a helix-hinge-helix motif, which is a common molecular fold among antimicrobial peptides. Spin-down assays of dermcidin and several related peptides revealed that the affinity with which dermcidin binds to bacterial-mimetic membranes is primarily dependent on its amphipathic $\alpha$-helical structure and its length (>30 residues); its negative net charge and acidic pI have little effect on binding. These findings suggest that the mode of action of dermcidin is similar to that of other membrane-targeting antimicrobial peptides, though the details of its antimicrobial action remain to be determined.
Keywords
Amphipthic $\alpha$-helical structure; Antimicrobial peptide; Helix-hinge-helix motif; Nuclear magnetic resonance (NMR) spectroscopy; Peptide-membrane interaction;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Oren, Z. and Shai, Y. (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 47, 451-463.   DOI   ScienceOn
2 Holak, T. A., Engstrom, A., Kraulis, P. J., Lindeberg, G., Bennich, H., Jones, T. A., Gronenborn, A. M. and Clore, G. M. (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry. 27, 7620-7629.   DOI   ScienceOn
3 Tossi, A., Sandri, L. and Giangaspero, A. (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers. 55, 4-30.   DOI   ScienceOn
4 Hancock, R. E. and Scott, M. G. (2000) The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. U.S.A. 97, 8856-8861.   DOI
5 Huang, H. W. (2000) Action of antimicrobial peptides: two-state model. Biochemistry. 39, 8347-8352.   DOI   ScienceOn
6 Yang, L., Harroun, T. A., Weiss, T. M., Ding, L. and Huang, H. W. (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81, 1475-1485.   DOI   ScienceOn
7 Matsuzaki, K., Sugishita, K., Ishibe, N., Ueha, M., Nakata, S., Miyajima, K. and Epand, R. M. (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry. 37, 11856-11863.   DOI   ScienceOn
8 Christensen, B., Fink, J., Merrifield, R. B. and Mauzerall, D. (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. U.S.A. 85, 5072-5076.   DOI   ScienceOn
9 Shai, Y. and Oren, Z. (2001) From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides. 22, 1629-1641.   DOI   ScienceOn
10 Ladokhin, A. S. and White, S. H. (2001) 'Detergent-like' permeabilization of anionic lipid vesicles by melittin. Biochim. Biophys. Acta. 1514, 253-260.   DOI   ScienceOn
11 Schittek, B., Hipfel, R., Sauer, B., Bauer, J., Kalbacher, H., Stevanovic, S., Schirle, M., Schroeder, K., Blin, N., Meier, F., Rassner, G. and Garbe, C. (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat. Immunol. 2, 1133-1137.   DOI   ScienceOn
12 Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.   DOI   ScienceOn
13 Selsted, M. E. and Ouellette, A. J. (2005) Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551-557.   DOI   ScienceOn
14 Ganz, T. and Lehrer, R. I. (1998) Antimicrobial peptides of vertebrates. Curr. Opin. Immunol. 10, 41-44.   DOI   ScienceOn
15 Finlay, B. B. and Hancock, R. E. (2004) Can innate immunity be enhanced to treat microbial infections? Nat. Rev. Microbiol. 2, 497-504.   DOI   ScienceOn
16 Epand, R. M. and Vogel, H. J. (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1462, 11-28.   DOI   ScienceOn
17 Bulet, P., Stocklin, R. and Menin, L. (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169-184.   DOI   ScienceOn
18 Katsu, T., Kuroko, M., Morikawa, T., Sanchika, K., Yamanaka, H., Shinoda, S. and Fujita, Y. (1990) Interaction of wasp venom mastoparan with biomembranes. Biochim. Biophys. Acta. 1027, 185-190.   DOI   ScienceOn
19 Oh, D., Shin, S. Y., Lee, S., Kang, J. H., Kim, S. D., Ryu, P. D., Hahm, K. S. and Kim, Y. (2000) Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry. 39, 11855-11864.   DOI   ScienceOn
20 Park, S. H., Kim, Y. K., Park, J. W., Lee, B. and Lee, B. J. (2000) Solution structure of the antimicrobial peptide gaegurin 4 by $^1H$ and $^{15}N$ nuclear magnetic resonance spectroscopy. Eur. J. Biochem. 267, 2695-2704.   DOI   ScienceOn
21 Tack, B. F., Sawai, M. V., Kearney, W. R., Robertson, A. D., Sherman, M. A., Wang, W., Hong, T., Boo, L. M., Wu, H., Waring, A. J. and Lehrer, R. I. (2002) SMAP-29 has two LPS-binding sites and a central hinge. Eur. J. Biochem. 269, 1181-1189.   DOI   ScienceOn
22 Cipakova, I., Gasperik, J. and Hostinova, E. (2006) Expression and purification of human antimicrobial peptide, dermcidin, in Escherichia coli. Protein. Expr. Purif. 45, 269-274.   DOI   ScienceOn
23 Guntert, P. (2004) Automated NMR structure calculation with CYANA. Methods. Mol. Biol. 278, 353-378.
24 Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. and Warren, G. L. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta. Crystallogr. D. Biol. Crystallogr. 54, 905-921.   DOI   ScienceOn
25 Flad, T., Bogumil, R., Tolson, J., Schittek, B., Garbe, C., Deeg, M., Mueller, C. A. and Kalbacher, H. (2002) Detection of dermcidin-derived peptides in sweat by Protein-Chip technology. J. Immunol. Methods. 270, 53-62.   DOI   ScienceOn
26 Lai, Y. P., Peng, Y. F., Zuo, Y., Li, J., Huang, J., Wang, L. F. and Wu, Z. R. (2005) Functional and structural characterization of recombinant dermcidin-1L, a human antimicrobial peptide. Biochem. Biophys. Res. Commun. 328, 243-250.   DOI   ScienceOn
27 Steffen, H., Rieg, S., Wiedemann, I., Kalbacher, H., Deeg, M., Sahl, H. G., Peschel, A., Gotz, F., Garbe, C. and Schittek, B. (2006) Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrob. Agents. Chemother. 50, 2608-2620.   DOI
28 Matsuzaki, K. (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim. Biophys. Acta. 1376, 391-400.   DOI   ScienceOn
29 Simmaco, M., Mignogna, G. and Barra, D. (1998) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers. 47, 435-450.   DOI   ScienceOn
30 Gazit, E., Lee, W. J., Brey, P. T. and Shai, Y. (1994) Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry. 33, 10681-10692.   DOI   ScienceOn