A Study of Electrospun PVDF on PET Sheet

  • Chanunpanich, Noppavan (Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's Institute of Technology North Bangkok) ;
  • Lee, Byung-Soo (Department of Automotive Engineering, Keimyung University) ;
  • Byun, Hong-Sik (Department of Chemical System Engineering, Keimyung University)
  • Published : 2008.04.30

Abstract

PVDF ($Kynar^{(R)}$ 761) nanofibers were made by electrospinning with an external voltage of 6-10 kV, a traveling distance of 7-15 cm and a flow rate of 0.4-1 mL/h. Although the mean diameter of the fibers has not changed significantly, the conditions affected the change in diameter distribution. This was attributed to interactions, both attraction and repulsion, between the positive charges on the polymer solutions and the electrically grounded collector. Higher voltages and traveling distance increased the level of attraction between the positive charge on the polymer solution and the electrically grounded collector, resulting in a narrow diameter distribution, In addition, a high flow rate allowed a high population of uniformly charged solutions to travel to the grounded collector, which resulted in a narrow diameter distribution. The optimum conditions for electrospinning of PVDF in DMAc/acetone (3/7 by wt) were a collector voltage of 6 kV, a syringe tip to collector of 7 cm, a flux rate of 0.4 mL/h and 10 kV, 10 cm, 1 mL/h, Since PVDF is widely used as a filtration membrane, it was electrospun on a PET support with a rotating drum as a grounded collector. Surprisingly, some straight nanofibers were separated from the randomly deposited nanofibers. The straight nanofiber area was transparent, while the randomly deposited nanofiber area was opaque. Both straight nanofibers and aligned nanotibers could be obtained by manipulating the PET drum collector. These phenomena were not observed when the support was changed to an Al sheet. This suggests that a pseudo dual collector was generated on the PET sheet. No negative charge was created because the PET sheet was not a conductive material. However, less charge was created when the sheet was not perfectly attached to the metal drum. Hence, the nanotibers jumped from one grounded site to the nearest one, yielding a straight nanofiber.

Keywords

References

  1. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, Macromolecules, 7, 573 (2004)
  2. D. Li, Y. Wang, and Y. Xia, Nano Letters, 3, 1167 (2003) https://doi.org/10.1021/nl0344256
  3. S. J. Kim, S. G. Yoon, Y. M. Lee, H. C. Kim, and S. I. Kim, Biosens. Bioelectron., 19, 531 (2004) https://doi.org/10.1016/S0956-5663(03)00277-X
  4. G. K. S. Prakash, M. C. Smart, Q.-J. Wang, A. Atti, V. Pleynet, B. Yang, K. McGrath, G. A. Olah, S. R. Narayanan, W. Chun, T. Valdez, and S. Surampudi, J. Fluo. Chem., 125, 1217 (2004) https://doi.org/10.1016/j.jfluchem.2004.05.019
  5. N. Chanunpanich, H. Byun, and I.-K. Kang, J. Membrane, 15, 85 (2005)
  6. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, Polymer, 44, 4029 (2003) https://doi.org/10.1016/S0032-3861(03)00345-8
  7. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  8. S. P. Deshmukh and K. Li, J. Membrane Sci., 150, 75 (1998) https://doi.org/10.1016/S0376-7388(98)00196-3
  9. M. Momtaz, J.-L. Dewez, and J. M. Brynaert, J. Membrane Sci., 250, 29 (2005) https://doi.org/10.1016/j.memsci.2004.10.011
  10. S. D. Flint and R. C. T. Slade, Solid State Ionics, 97, 299 (1997) https://doi.org/10.1016/S0167-2738(97)00037-4
  11. D. I. Ostrovskii, L. M. Torell, M. Paronen, S. Hietala, and F. Sundholm, Solid State Ionics, 97, 315 (1997) https://doi.org/10.1016/S0167-2738(97)00079-9
  12. M. M. E. Jacob, S. R. S. Prabaharan, and S. Radhakrishna, Solid State Ionics, 104, 267 (1997)
  13. P. Schielen, W. Rodijnen, J. Tekstra, R. Albers, and W. Seinen, J. Immun. Methods, 188, 33 (1995) https://doi.org/10.1016/0022-1759(95)00199-9
  14. L. Ying, E. T. Kang, K. G. Neoh, K. Kato, and H. Iwata, J. Membrane Sci., 243, 253 (2004) https://doi.org/10.1016/j.memsci.2004.06.028
  15. J. F. Tarlton and P. J. Knight, J. Immun. Methods, 191, 65 (1996) https://doi.org/10.1016/0022-1759(96)00003-8
  16. H.-F. Lua, W. S. Lima, J. Wanga, Z-Q. Tanga, P-C. Zhanga, K. W. Leonga, S. M. Chiac, H. Yuc, and H.-Q. Mao, Biomaterials, 24, 4893 (2003) https://doi.org/10.1016/S0142-9612(03)00404-6
  17. E. R. Cornelissen, Th. van den Boomgaard, and H. Strathmann, Colloid Surface A, 138, 283 (1998) https://doi.org/10.1016/S0927-7757(96)03862-9
  18. G. Zhai, E. T. Kang, and K. G. Neoh, J. Membrane Sci., 217, 243 (2003) https://doi.org/10.1016/S0376-7388(03)00140-6
  19. L. Ying, E. T. Kang, and K. G. Neoh, J. Membrane Sci., 224, 93 (2003) https://doi.org/10.1016/j.memsci.2003.07.002
  20. R. Mazzei, E. Smolko, D. Tadey, and L. Gizzi, Nucl. Instrum. Meth. B, 170, 419 (2000) https://doi.org/10.1016/S0168-583X(00)00243-3
  21. N. Tzanetakis, J. Varcoe, R. S. Slade, and K. Scott, Electro. Commun., 5, 115 (2003) https://doi.org/10.1016/S1388-2481(02)00554-4
  22. N. Tzanetakis, W. M. Taama, K. Scott, J. Varcoe, and R. S. Slade, Desalination, 15l, 275 (2002) https://doi.org/10.1016/S0011-9164(02)01020-2
  23. M. Carano, N. Lion, J.-P. Abid, and H. H. Girault, Electro. Commun., 6, 1217 (2004) https://doi.org/10.1016/j.elecom.2004.09.018
  24. L. Ying, G. Zhai, A. Y. Winata, E. T. Kang, and K. G. Neoh, J. Colloid Interf. Sci., 265, 396 (2003) https://doi.org/10.1016/S0021-9797(03)00507-1
  25. P. Gupta and G. L. Wilkes, Polymer, 44, 6353 (2003) https://doi.org/10.1016/S0032-3861(03)00616-5
  26. K. J. Pawlowski, H. L. Belvin, D. L. Raney, J. Su, J. S. Harrison, and E. J. Siochi, Polymer, 44, 1309 (2003) https://doi.org/10.1016/S0032-3861(02)00859-5
  27. S.-S. Choi, Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, and K.-S. Han, Electrochim. Acta, 50, 339 (2004) https://doi.org/10.1016/j.electacta.2004.03.057
  28. J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, Electrochim. Acta, 50, 69 (2004) https://doi.org/10.1016/j.electacta.2004.07.014
  29. S.-H. Tan, R. Inai, M. Kotaki, and S. Ramakrishn, Polymer, 46, 6128 (2005) https://doi.org/10.1016/j.polymer.2005.05.068
  30. N. Chanunpanich and H. Byun, J. Appl. Polym. Sci., 106, 3648 (2007) https://doi.org/10.1002/app.24694
  31. W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, Polymer, 45, 2959 (2004) https://doi.org/10.1016/j.polymer.2004.03.006
  32. K. Morota, H. Matsumoto, T. Mizukoshi, Y. Konosu, M. Minagawa, A. Tanioka, Y. Yamagata, and K. Inoue, J. Colloid Interf. Sci., 279, 484 (2004) https://doi.org/10.1016/j.jcis.2004.06.075
  33. Y. Chen and C.-Y. Shew, Chem. Phys. Lett., 378, 142 (2003) https://doi.org/10.1016/S0009-2614(03)01208-9