Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.307

Aminopropyl Functionalized Silica Nanoparticle Dispersed Nafion Composite Membranes for Vanadium Redox Flow Batteries  

Lee, Doohee (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
Yu, Duk Man (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
Yoon, Sang Jun (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
Kim, Sangwon (Department of Environmental and Polymer Engineering, Inha University)
So, Soonyong (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
Hong, Young Taik (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Membrane Journal / v.30, no.5, 2020 , pp. 307-318 More about this Journal
Abstract
Conventional perfluorinated sulfonic acid membrane, Nafion is widely used for vanadium redox flow battery (VRFB). It is desired to prevent vanadium ion permeation through a membrane to retain the capacity, and to keep the cell efficiency of a VRFB. Highly proton conductive and chemically stable Nafion membranes, however, suffer from high vanadium permeation, which induce the reduction in charge and discharge capacity by side reactions of vanadium ions. In this study, to resolve the issue, silica nanoparticles, which are functionalized with 3-aminopropyl group (fS) are introduced to enhance the long-term performance of a VRFB by lowering vanadium permeation. It is expected that amine groups on silica nanoparticles are converted to positive ammonium ion, which could deteriorate positively charged vanadium ions' crossover by Gibbs-Donnan effect. There is reduction in proton conductivity may due to acid-base complexation between fS and Nafion side chains, but ion selectivity of proton to vanadium ion is enhanced by introducing fS to Nafion membranes. With the composite membranes of Nafion and fS, VRFBs maintain their discharge capacity up to 80% at a high current density of 150 mA/㎠ during 200 cycles.
Keywords
Nafion; functionalized silica nanoparticle; Gibbs-Donnan effect; vanadium redox flow battery;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 B. Jiang, L. Wu, L. Yu, X. Qiu, and J. Xi, "A comparative study of Nafion series membranes for vanadium redox flow batteries", J. Membr. Sci., 510, 18 (2016).   DOI
2 K. A. Mauritz and R. B. Moore, "State of understanding of Nafion", Chem. Rev., 104, 4535 (2004).   DOI
3 W. Y. Hsu and T. D. Gierke, "Ion transport and clustering in nafion perfluorinated membranes", J. Membr. Sci., 13, 307 (1983).   DOI
4 M. A. Aziz and S. Shanmugam, "Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery", J. Power Sources, 337, 36 (2017).   DOI
5 L. Yu, F. Lin, L. Xu, and J. Xi, "A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries", RSC Adv., 6, 3756 (2016).   DOI
6 S. I. Hossain, M. A. Aziz, and S. Shanmugam, "Ultrahigh ion-selective and durable Nafion-NdZr composite layer membranes for all-vanadium redox flow batteries", ACS Sustain. Chem. Eng., 8, 1998 (2020).   DOI
7 Y. Lee, S. Kim, R. Hempelmann, J. H. Jang, H.‐J. Kim, J. Han, J. Kim, and D. Henkensmeier, "Nafion membranes with a sulfonated organic additive for the use in vanadium redox flow batteries", J. Appl. Polym. Sci., 136, 8 (2019).
8 Z. Xia, L. Ying, J. Fang, Y.-Y. Du, W.-M. Zhang, X. Guo, and J. Yin, "Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications", J. Membr. Sci., 525, 229 (2017).   DOI
9 L. Semiz, N. Demirci Sankir, and M. Sankir, "Influence of the basic membrane properties of the disulfonated poly(arylene ether sulfone) copolymer membranes on the vanadium redox flow battery performance", J. Membr. Sci., 468, 209 (2014).   DOI
10 J. Dai, X. Teng, Y. Song, X. Jiang, and G. Yin, "A super thin polytetrafluoroethylene/sulfonated poly (ether ether ketone) membrane with 91% energy efficiency and high stability for vanadium redox flow battery", J. Appl. Polym. Sci., 133, 1 (2016).
11 H. Y. Jung, M. S. Cho, T. Sadhasivam, J. Y. Kim, S. H. Roh, and Y. Kwon, "High ionic selectivity of low permeable organic composite membrane with amphiphilic polymer for vanadium redox flow batteries", Solid State Ionics, 324, 69 (2018).   DOI
12 J. Xi, Z. Wu, X. Qiu, and L. Chen, "Nafion/$SiO_2$ hybrid membrane for vanadium redox flow battery", J. Power Sources, 166, 531 (2007).   DOI
13 B. G. Kim, T. H. Han, and C. G. Cho, "Sulfonated graphene oxide/nafion composite membrane for vanadium redox flow battery", J. Nanosci. Nanotechnol., 14, 9073 (2014).   DOI
14 X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, and L. Chen, "Nafion/organic silica modified $TiO_2$ composite membrane for vanadium redox flow battery via in situ sol-gel reactions", J. Membr. Sci., 341, 149 (2009).   DOI
15 C. H. Lin, M. C. Yang, and H. J. Wei, "Amino-silica modified Nafion membrane for vanadium redox flow battery", J. Power Sources, 282, 562 (2015).   DOI
16 S. W. Choi, T. H. Kim, S. W. Jo, J. Y. Lee, S. H. Cha, and Y. T. Hong, "Hydrocarbon membranes with high selectivity and enhanced stability for vanadium redox flow battery applications: Comparative study with sulfonated poly(ether sulfone)s and sulfonated poly(thioether ether sulfone)s", Electrochim. Acta, 259, 427 (2018).   DOI
17 H. Zhang, X. Yan, L. Gao, L. Hu, X. Ruan, W. Zheng, and G. He, "Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-conducting channels of amphoteric membranes for high-performance vanadium redox flow battery", ACS Appl. Mater. Interfaces, 11, 5003 (2019).   DOI
18 Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, and Y. Zhang, "Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery", J. Membr. Sci., 325, 553 (2008).   DOI
19 Z. Mai, H. Zhang, X. Li, C. Bi, and H. Dai, "Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application", J. Power Sources, 196, 482 (2011).   DOI
20 X. Teng, C. Sun, J. Dai, H. Liu, J. Su, and F. Li, "Solution casting Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application", Electrochim. Acta, 88, 725 (2013).   DOI
21 Z. Li, W. Dai, L. Yu, L. Liu, J. Xi, X. Qiu, and L. Chen, "Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application", ACS Appl. Mater. Interfaces, 6, 18885 (2014).   DOI
22 X. Wei, Z. Nie, Q. Luo, B. Li, B. Chen, K. Simmons, V. Sprenkle, and W. Wang, "Nanoporous polytetrafl uoroethylene/silica composite separator as a high-performance all-vanadium redox flow battery membrane", Adv. Energy Mater., 3, 1215 (2013).   DOI
23 M. Jung, W. Lee, N. N. Krishnan, S. Kim, G. Gupta, L. Komsiyska, C. Harms, Y. Kwon, and D. Henkensmeier, "Porous-Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries", Appl. Surf. Sci., 450, 301 (2018).   DOI
24 T. Luo, O. David, Y. Gendel, and M. Wessling, "Porous poly(benzimidazole) membrane for all vanadium redox flow battery", J. Power Sources, 312, 45 (2016).   DOI
25 Y.-J. Kim, D.-H. Kim, and M.-S. Kang, "Optimum design of pore-filled anion-exchange membranes for efficient all-vanadium redox flow batteries", Membr. J., 30, 21 (2020).   DOI
26 J.-M. Lee, M.-S. Lee, K.-S. Nahm, J.-D. Jeon, Y.-G. Yoon, and Y.-W. Choi, "A study on the effect of different functional groups in anion exchange membranes for vanadium redox flow batteries", Membr. J., 27, 415 (2017).   DOI
27 E. M. Davis, J. Kim, V. P. Oleshko, K. A. Page, and C. L. Soles, "Uncovering the structure of Nafion-$SiO_2$ hybrid ionomer membranes for prospective large-scale energy storage devices", Adv. Funct. Mater., 25, 4064 (2015).   DOI
28 J. Kerres, A. Ullrich, F. Meier, and T. Haring, "Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells", Solid State Ionics, 125, 243 (1999).   DOI
29 B. Liu, Y. Zhang, Y. Jiang, P. Qian, and H. Shi, "High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery", J. Membr. Sci., 591, 117332 (2019).   DOI
30 S. Liu, D. Li, L. Wang, H. Yang, X. Han, and B. Liu, "Ethylenediamine-functionalized graphene oxide incorporated acid-base ion exchange membranes for vanadium redox flow battery", Electrochim. Acta, 230, 204 (2017).   DOI
31 R. Niu, L. Kong, L. Zheng, H. Wang, and H. Shi, "Novel graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) acid-base hybrid membrane for vanadium redox flow battery", J. Membr. Sci., 525, 220 (2017).   DOI
32 S.-H. Yang, D.-S. Yang, S. J. Yoon, S. So, S.-K. Hong, D. M. Yu, and Y. T. Hong, "TEMPO radical- embedded perfluorinated sulfonic acid ionomer composites for vanadium redox flow batteries", Energy and Fuels, 34, 7631 (2020).   DOI
33 L. Zeng, T. S. Zhao, L. Wei, H. R. Jiang, and M. C. Wu, "Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges", Appl. Energy, 233, 622 (2019).   DOI
34 L. Hao, Y. Wang, and Y. He, "Modeling of ion crossover in an all-vanadium redox flow battery with the interfacial effect at membrane/electrode interfaces", J. Electrochem. Soc., 166, A1310 (2019).   DOI
35 B. Muriithi and D. A. Loy, "Processing, morphology, and water uptake of nafion/Ex situ stöber silica nanocomposite membranes as a function of particle size", ACS Appl. Mater. Interfaces, 4, 6766 (2012).   DOI
36 C. I. Horvat, X. Zhu, D. Turp, R. A. Vinokur, D. E. Demco, R. Fechete, O. Conradi, A. Graichen, D. Anokhin, D. A. Ivanov, and M. Moller, "Perfluorosulfonic acid ionomer - Silica composite membranes prepared using hyperbranched polyethoxysiloxane for polymer electrolyte membrane fuel cells", Int. J. Hydrogen Energy, 37, 14454 (2012).   DOI
37 J. Ahn, W. J. Chung, I. Pinnau, and M. D. Guiver, "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", J. Membr. Sci., 314, 123 (2008).   DOI
38 S. A. Berlinger, B. D. McCloskey, and A. Z. Weber, "Inherent acidity of perfluorosulfonic acid ionomer dispersions and implications for ink aggregation", J. Phys. Chem. B, 122, 7790 (2018).   DOI
39 A. Jansto and E. M. Davis, "Role of surface chemistry on nanoparticle dispersion and vanadium ion crossover in Nafion nanocomposite membranes", ACS Appl. Mater. Interfaces, 10, 36385 (2018).   DOI
40 B. Schwenzer, S. Kim, M. Vijayakumar, Z. Yang, and J. Liu, "Correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties", J. Membr. Sci., 372, 11 (2011).   DOI
41 H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: A critical review", Prog. Nat. Sci., 19(3), 291 (2009).   DOI
42 Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, "Electrochemical energy storage for green grid", Chem. Rev., 111, 3577 (2011).   DOI
43 A. Castillo and D. F. Gayme, "Grid-scale energy storage applications in renewable energy integration: A survey", Energy Convers. Manag., 87, 885 (2014).   DOI
44 Y. Yang, S. Bremner, C. Menictas, and M. Kay, "Battery energy storage system size determination in renewable energy systems: A review", Renew. Sustain. Energy Rev., 91, 109 (2018).   DOI
45 M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development", J. Electrochem. Soc., 158, 55 (2011).
46 P. Leung, X. Li, C. Ponce De Leon, L. Berlouis, C. T. J. Low, and F. C. Walsh, "Progress in redox flow batteries, remaining challenges and their applications in energy storage", RSC Adv., 2(27), 10125 (2012).   DOI
47 M. Ulaganathan, V. Aravindan, Q. Yan, S. Madhavi, M. Skyllas-Kazacos, and T. M. Lim, "Recent advancements in all-vanadium redox flow batteries", Adv. Mater. Interfaces, 3(1), 1 (2016).
48 X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, "Ion exchange membranes for vanadium redox flow battery (VRB) applications", Energy Environ. Sci., 4, 1147 (2011).   DOI
49 Y. Shi, C. Eze, B. Xiong, W. He, H. Zhang, T. M. Lim, A. Ukil, and J. Zhao, "Recent development of membrane for vanadium redox flow battery applications: A review", Appl. Energy, 238, 202 (2019).   DOI
50 A. Parasuraman, T. M. Lim, C. Menictas, and M. Skyllas-Kazacos, "Review of material research and development for vanadium redox flow battery applications", Electrochim. Acta, 101, 27 (2013).   DOI
51 B. Turker, S. Arroyo Klein, E. M. Hammer, B. Lenz, and L. Komsiyska, "Modeling a vanadium redox flow battery system for large scale applications", Energy Convers. Manag., 66, 26 (2013).   DOI
52 J. Sun, D. Shi, H. Zhong, X. Li, and H. Zhang, "Investigations on the self-discharge process in vanadium flow battery", J. Power Sources, 294, 562 (2015).   DOI
53 L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, and Z. Yang, "A stable vanadium redox-flow battery with high energy density for large-scale energy storage", Adv. Energy Mater., 1, 394 (2011).   DOI
54 J. Sarkar and S. Bhattacharyya, "Application of graphene and graphene-based materials in clean energy-related devices Minghui", Arch. Thermodyn., 33, 23 (2012).   DOI
55 X.-Z. Yuan, C. Song, A. Platt, N. Zhao, H. Wang, H. Li, K. Fatih, and D. Jang, "A review of all-vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies", Int. J. Energy Res., 43, 6599 (2019).
56 B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, and Z. Yang, "Membrane development for vanadium redox flow batteries", ChemSusChem, 4, 1388, (2011).   DOI