• Title/Summary/Keyword: membrane actions

Search Result 90, Processing Time 0.028 seconds

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

Non-Genomic Actions of Progesterone : Focussed on the Signaling Pathways in the Mammalian Ovary (프로게스테론의 비유전자 수준 작용 : 포유류 난소에서의 신호 전달 경로를 중심으로)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.85-92
    • /
    • 2006
  • Progesterone(P4) is an important intermediate in the synthesis of androgens and estrogens. Furthermore, P4 itself plays a crucial role in ovulation, atresia and luteinization, and is essential for the continuation of early pregnancy in all mammalian species. In spite of the hormone's physiological importance, the exact action mechanism(s) of P4 in mammalian ovary has not been fully understood yet. In this context, a decades-long controversy regarding the identity of receptors that mediate non-genomic, transcription-independent cellular responses to P4 is presently attracting huge scientific interests. P4 may exert its action in mammalian ovary by several ways: 1) the well-documented genomic pathway, involving hormone binding to so-called classic cytosolic receptor(PGR) and subsequent modulation of gene expression by the ligand-receptor complex as transcription factor. 2) pathways are operating that do not act on the genome, therefore refered to as non-genomic actions. The prominent characteristics of the non-genomic P4 actions are: (i) rapid, (ii) insensitive to transcription inhibitors, (iii) transduced by membrane associated molecules. In particular, the non-genomic P4 actions could be mediated by: (a) classic genomic P4 receptor(PGR) that localizes at or near the plasma membrane, (b) a family of membrane progestin receptors(MPR $\alpha$, MPR $\beta$ and MPR $\gamma$), (c) progesterone receptor membrane component I(PGRMC1), and (d) a membrane complex composed of serpine I mRNA binding protein(SERBP1). The present review summarized these rapid signaling pathways of P4 in the mammalian ovary.

  • PDF

Antifungal Activity of Medium-chain Saturated Fatty Acids and Their Inhibitory Activity to the Plasma Membrane H+-ATPase of Fungi (중급 지방산 항진균 활성과 진균의 Plasma membrane H+-ATPase에 대한 저해작용)

  • 이상화;김창진
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.354-358
    • /
    • 1999
  • In order to know the antifungal characteristics of saturated fatty acids having 6 to 12 carbons, their minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) were estimated against Saccharomyces cerevisiae. Fatty acids from C6 to C11 exhibited increasing activity with chain length, but C12 fatty acid did not show activity at all. In relation to antifungal modes of actions, fatty acids investigated showed on inhibitory activity toward the plasma membrane H+-ATPase of Saccharomyces cerevisiae. Their inhibitions to the glucose-induced acidification and ATP hydrolysis caused by the proton pump were found to be in common wiht antifungal activities. At the test concentration of 1mM, hexanoic acid (C6) showed the lowest inhibition of about 30%, while undecanoic acid(C11) showed the strongest inhibition of over 90%. In addition, as seen with antifungal activity, the inhibitory activity of dodecanoic acid (C12) was suddenly reduced to less than 50%.

  • PDF

Molecular Mechanism of Action of Local Anesthetics: A Review

  • Yun, Il;Kang, Jung-Sook
    • Journal of Life Science
    • /
    • v.2 no.2
    • /
    • pp.97-107
    • /
    • 1992
  • Strichartz and Richie have suggested that the mechanism of sodium donductance block of local anesthetics involves their interaction with a specific binding site within the sodium channel. However, there is evidence that local anesthetics can interact electrostatically with membrane proteins as well as membrane lipids. Whether or not all actions of local anesthetics are mediated by common site remains unclear. Thus, it can not be ruled out that local anesthetics concurrently interact with neuronal membrane lipids since sodium channels were found to be tightly associated with membrane lipids through covalent or noncovalent bonds. In summary, it is strongly postulated that local anesthetics, in addition to their direct interaction with sodium channels, concurrently interact with membrane lipids, fluidize the membrane, and thus induce conformational changes of sodium channels, which are known to be tightly associated with membrane lipids.

  • PDF

A Study on the Pretreatment Process for Sewage Reuse by Microfiltration Process (정밀여과에 의한 하수고도처리수의 재이용을 위한 전처리법에 관한 연구)

  • Kuk, Young-Long;Joo, Jae-Young;Bae, Yoon-Sun;Lee, Hye-In;Jung, In-Ho;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.595-601
    • /
    • 2010
  • It is evident that Korea will continue its battle with water shortage and alternative program are being taken into action. One of the main actions is reusing 1,800 tons of effluent of 357 sewage treatment plant located nationwide. Therefore this study supplemented ozone oxidation methods that would increase the efficiency of organic oxidation and coagulation. Through this method, fouling will be controled sufficiently by preventing membrane process in the system for advanced sewage treatment. In this study, ozone-coagulation-microfiltration membrane were used. The final removal efficiency of the pretreated water from the result of the ozone-coagulation were 50% of CODcr, 38% of TP and 11% of TOC respectively. Water quality treatment has decreased about 80% for TP. Ozone-coagulation-microfiltration membrane maintains the high flux while decreasing the number of organic matter and the membrane fouling, and reducing the TP. As a result, in order to reuse the water from the sewage, the ozone-coagulation-microfiltration membrane type must be considered in order to achieve the best efficiency.

Behavior of RC Gabled Hyperbolic Paraboloid Shell (RC 쌍곡포물선 내림마루형식 지붕 쉘의 거동)

  • 민창식;이재석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.207-214
    • /
    • 1995
  • Muller-Scordelis RC Gabled Hyperbolic Paraboloid (HP) shell is divided by 40 40 mesh and analyzed using a finite element computer program which was developed by Mahamoud and Gupta and migrated to a Cray Y-U 00 at SERI. The results are compared with membrane theory and Muller-Scordelis's results. Comparing with Muller-Scordelis's result it shows that good agreements between two analyses, except a discrepancy in the normal deflections of the crown beam. The behavior of the crown beam is quite sensitive and needs further study. The analysis shows that Gabled HP shells do not behave as the typical shells according to the membrane theory. To design such Gabled HP shells we rather use a finite element analysis which simulates realistically membrane and honing actions of the shells.

  • PDF

Paeonia lactiflora Inhibits Cell Wall Synthesis and Triggers Membrane Depolarization in Candida albicans

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.395-404
    • /
    • 2017
  • Fungal cell walls and cell membranes are the main targets of antifungals. In this study, we report on the antifungal activity of an ethanol extract from Paeonia lactiflora against Candida albicans, showing that the antifungal activity is associated with the synergistic actions of preventing cell wall synthesis, enabling membrane depolarization, and compromising permeability. First, it was shown that the ethanol extract from P. lactiflora was involved in damaging the integrity of cell walls in C. albicans. In isotonic media, cell bursts of C. albicans by the P. lactiflora ethanol extract could be restored, and the minimum inhibitory concentration (MIC) of the P. lactiflora ethanol extract against C. albicans cells increased 4-fold. In addition, synthesis of $(1,3)-{\beta}-{\small{D}}-glucan$ polymer was inhibited by 87% and 83% following treatment of C. albicans microsomes with the P. lactiflora ethanol extract at their $1{\times}MIC$ and $2{\times}MIC$, respectively. Second, the ethanol extract from P. lactiflora influenced the function of C. albicans cell membranes. C. albicans cells treated with the P. lactiflora ethanol extract formed red aggregates by staining with a membrane-impermeable dye, propidium iodide. Membrane depolarization manifested as increased fluorescence intensity by staining P. lactiflora-treated C. albicans cells with a membrane-potential marker, $DiBAC_4(3)$ ((bis-1,3-dibutylbarbituric acid) trimethine oxonol). Membrane permeability was assessed by crystal violet assay, and C. albicans cells treated with the P. lactiflora ethanol extract exhibited significant uptake of crystal violet in a concentration-dependent manner. The findings suggest that P. lactiflora ethanol extract is a viable and effective candidate for the development of new antifungal agents to treat Candida-associated diseases.

Modulation of the Aging Process by Food Restriction (칼로리 제한에 노화과정의 조절)

  • 최진호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.2
    • /
    • pp.187-196
    • /
    • 1991
  • Aging is the progressive accumulation of changes with time associated with responsible for the ever-increasing susceptibility to disease and death which accompanies advancing age. Lipid peroxides easily produced in the membrane system by the chain reaction of free radicals which occurred from various environmental factors. The amount of lipid peroxides produced in biological system increased with aging process, and lipid peroxidation damages involved in aging process and pathological disorders. Although lipid peroxides have such deleterious effects on the organisms, there are numerous substances and mechanisms which prevent the reaction of peroxide formation and protect the subject from its toxicity. This review provides an overview of how does lipid peroxidation of unsaturated lipids take place by free radical, and what is the intervention of lipid peroxides in pathogenesis of some human diseases, and also how does food restriction influences the aging process and various pathological disorders. The major focus of this paper is to review the evidence indicating that food restriction retards the aging process, and possible mechanisms of its actions. Therefore, it discussed the effects of age and food restriction on life-span, membrane yield, lipid peroxidation, fatty acid composition and peroxidizability, cholesterol and triglyceride levels, prostaglasndin and thromboxane synthesis, which may be concerned with blood flow, membrane fluidity, homeostasis and glomerular filtration rate in living body.

  • PDF

The Protective Role of Calcium in the Lethal Actions of Certain Metal Ions on the Growth of Lemna and Arabidopsis Plants (각종 금속염의 Lemna 및 Arabidopsis에 대한 치사작용과 석탄의 그 보호작용에 관하여)

  • Chung, Jun;Kwack, Beyoung-Hwa
    • Journal of Plant Biology
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 1969
  • The lethal actions in Arabidopsis thaliana and Lemna polyrhiza brought about by certain inorganic form of Mn, Ba, Hg, Cu salts, and organic form of Na salts, were studied with aseptic artificial media. These metal ions at certain concentrations caused lethality of either Arabidopsis or Lemna when the media were without Ca ion. On the contrary, addition of Ca to the media protected the organisms from such lethality. It was postulated for the present from the proceeding evidence that Ca adsorbed and distributed along the sites between the plasma and cell membrane acts for suppressing permeation of toxic level of metal ions causing the lethality of these plants.

  • PDF

Effects of Chlorhexidine Digluconate on Rotational Rate of n-(9-Anthroyloxy)stearic Acid in Porphyromonas ginginvalis Outer Membranes

  • Jang, Hye-Ock;Cha, Seong-Kweon;Lee, Chang;Choi, Min-Gak;Huh, Sung-Ryul;Shin, Sang-Hun;Chung, In-Kyo;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.125-130
    • /
    • 2003
  • The aim of this study was to provide a basis for studying the molecular mechanism of pharmacological action of chlorhexidine digluconate. Fluorescence polarization of n-(9-anthroyloxy)stearic acid was used to examine the effect of chlorhexidine digluconate on differential rotational mobility of different positions of the number of membrane bilayer phospholipid carbon atoms. The six membrane components differed with respect to 2, 3, 6, 9, 12, and 16-(9-anthroyloxy)stearic acid (2-AS, 3-AS, 6-AS, 9-AS, 12-AS and 16-AP) probes, indicating different membrane fluidity. Chlorhexidine digluconate increased the rate of rotational mobility of hydrocarbon interior of the cultured Porphyromonas gingivalis outer membranes (OPG) in a dose-dependent manner, but decreased the mobility of surface region (membrane interface) of the OPG. Disordering or ordering effects of chlorhexidine digluconate on membrane lipids may be responsible for some, but not all of its bacteriostatic and bactericidal actions.