Browse > Article
http://dx.doi.org/10.4014/jmb.1611.11064

Paeonia lactiflora Inhibits Cell Wall Synthesis and Triggers Membrane Depolarization in Candida albicans  

Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University)
Kim, Younhee (Department of Korean Medicine, Semyung University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.2, 2017 , pp. 395-404 More about this Journal
Abstract
Fungal cell walls and cell membranes are the main targets of antifungals. In this study, we report on the antifungal activity of an ethanol extract from Paeonia lactiflora against Candida albicans, showing that the antifungal activity is associated with the synergistic actions of preventing cell wall synthesis, enabling membrane depolarization, and compromising permeability. First, it was shown that the ethanol extract from P. lactiflora was involved in damaging the integrity of cell walls in C. albicans. In isotonic media, cell bursts of C. albicans by the P. lactiflora ethanol extract could be restored, and the minimum inhibitory concentration (MIC) of the P. lactiflora ethanol extract against C. albicans cells increased 4-fold. In addition, synthesis of $(1,3)-{\beta}-{\small{D}}-glucan$ polymer was inhibited by 87% and 83% following treatment of C. albicans microsomes with the P. lactiflora ethanol extract at their $1{\times}MIC$ and $2{\times}MIC$, respectively. Second, the ethanol extract from P. lactiflora influenced the function of C. albicans cell membranes. C. albicans cells treated with the P. lactiflora ethanol extract formed red aggregates by staining with a membrane-impermeable dye, propidium iodide. Membrane depolarization manifested as increased fluorescence intensity by staining P. lactiflora-treated C. albicans cells with a membrane-potential marker, $DiBAC_4(3)$ ((bis-1,3-dibutylbarbituric acid) trimethine oxonol). Membrane permeability was assessed by crystal violet assay, and C. albicans cells treated with the P. lactiflora ethanol extract exhibited significant uptake of crystal violet in a concentration-dependent manner. The findings suggest that P. lactiflora ethanol extract is a viable and effective candidate for the development of new antifungal agents to treat Candida-associated diseases.
Keywords
Antifungal; Candida albicans; cell wall; membrane permeability; membrane potential; Paeonia lactiflora;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Halder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, et al. 2015. Alteration of zeta potential and membrane permeability in bacteria: a study with cationic agents. SpringerPlus 4: 672.   DOI
2 Choi IH, Kim Y, Lee DN, Kim HJ. 2005. Antifungal effects of Cinamon Ramulus, Pulsatillae Radix, Dictamni Radicis Cortex, Paeonia Radix, Arecae Semen, Artemisiae Capillaries Herba against Candida albicans. Korean J. Orient. Physiol. Pathol. 19: 690-695.
3 Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, et al. 2000. Discovery of novel antifungal (1,3)-${\beta}$-D-glucan synthase inhibitors. Antimicrob. Agents Chemother. 44: 368-377.   DOI
4 Chandra J, Patel JD, Li J, Zhou G, Mukherjee PK, McCormick TS, et al. 2005. Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. Appl. Environ. Microbiol. 71: 8795-8801.   DOI
5 Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A. 1986. The rate of killing of Escherichia coli by ${\beta}$-lactam antibiotics is strictly proportional to the rate of bacterial growth. J. Gen. Microbiol. 132: 1297-1304.
6 Ehara M, Noguchi T, Ueda K. 1996. Uptake of neutral red by the vacuoles of a green alga, Micrasterias pinnatifida. Plant Cell Physiol. 37: 734-741.   DOI
7 Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A. 2007. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp. Biochem. Physiol. C 146: 281-300.
8 Li SC, Kane PM. 2009. The yeast lysosome-like vacuole: endpoint and crossroads. Biochim. Biophys. Acta 1793: 650-663.   DOI
9 Wilson HA, Chused TM. 1985. Lymphocyte membrane potential and $Ca^{2+}$ sensitivity potassium channels described by oxonol dye fluorescence measurements. J. Cell. Physiol. 125: 72-81.   DOI
10 Devi KP, Nisha SA, Sakthivel R, Pandian SK. 2010. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 130: 107-115.   DOI
11 Volkov V. 2015. Quantitative description of ion transport via plasma membrane of yeast and small cells. Front. Plant Sci. 6: 1-22.
12 Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, Burke MD. 2012. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA 109: 2234-2239.   DOI
13 Pfaller MA, Pappas PG, Wingard JR. 2006. Invasive fungal pathogens: current epidemiological trends. Clin. Infect. Dis. 43: S3-S14.   DOI
14 Eliopoulos GM, Perea S, Patterson TF. 2002. Antifungal resistance in pathogenic fungi. Clin. Infect. Dis. 35: 1073-1080.   DOI
15 Lortholary O, Dupont B. 1997. Antifungal prophylaxis during neutropenia and immunodeficiency. Clin. Microbiol. Rev. 10: 477-504.
16 Vandeputte P, Ferrari S, Coste AT. 2011. Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol. 2012: 1-26.
17 White TC, Marr KA, Bowden RA. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11: 382-402.
18 Carrillo-Munoz AJ, Giusiano G, Ezkurra PA, Quindos G. 2006. Antifungal agents: mode of action in yeast cells. Rev. Esp. Quimioter. 19: 130-139.
19 Kurtz M, Douglas C. 1997. Lipopeptide inhibitors of fungal glucan synthase. J. Med. Vet. Mycol. 35: 79-86.   DOI
20 Jenkinson HF, Douglas LJ. 2002. Interactions between Candida species and bacteria in mixed infections. Brogden KA, Guthmiller JM (eds.). Polymicrobial Diseases. ASM Press, Washington, DC.
21 Zhang W, Dai SM. 2012. Mechanisms involved in the therapeutic effects of Paeonia lactiflora Pallas in rheumatoid arthritis. Int. Immunopharmacol. 14: 27-31.   DOI
22 Vermes A, Guchelaar HJ, Dankert J. 2000. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 46: 171-179.   DOI
23 Carson CF, Mee BJ, Riley TV. 2002. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 46: 1914-1920.   DOI
24 Shapiro RS, Robbins N, Cowen LE. 2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev. 75: 213-267.   DOI
25 Cowan MM. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564-582.
26 Kim CM, Shin MK, Ahn DK, Lee KS (eds.). 1998. The Encyclopedia of Oriental Herbal Medicine (Korean version), 1st Ed. Jeongdam Press, Seoul, Korea.
27 Clinical and Laboratory Standards Institute. 2008. M27-A3. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard. 3rd Ed. Clinical and Laboratory Standards Institute, Wayne, PA.
28 Shedletzky E, Unger C, Delmer DP. 1997. A microtiter-based fluorescence assay for (1,3)-${\beta}$-glucan synthases. Anal. Biochem. 249: 88-93.   DOI
29 Liu M, Seidel V, Katerere DR, Gray AI. 2007. Colorimetric broth microdilution method for the antifungal screening of plant extracts against yeast. Methods 42: 325-329.   DOI
30 Frost DJ, Brandt KD, Cugier D, Goldman R. 1995. A wholecell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly. J. Antibiot. 48: 306-310.   DOI
31 Lee HS, Kim Y. 2016. Antifungal activity of Salvia miltiorrhiza against Candida albicans is associated with the alteration of membrane permeability and (1,3)-${\beta}$-D-glucan synthase activity. J. Microbiol. Biotechnol. 26: 610-617.   DOI
32 Vaara M, Vaara T. 1981. Outer membrane permeability barrier disruption by polymixin in polymixin-susceptible and resistant Salmonella typhimurium. Antimicrob. Agents Chemother. 19: 578-583.   DOI
33 Lee HS, Kim Y. 2014. Antifungal activity of Rheum undulatum on Candida albicans by the changes in membrane permeability. Korean J. Microbiol. 50: 360-367.   DOI