Browse > Article
http://dx.doi.org/10.12989/was.2014.19.1.035

A numerical solution to fluid-structure interaction of membrane structures under wind action  

Sun, Fang-Jin (College of Civil Engineering and Architecture, Liaoning Technical University)
Gu, Ming (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
Publication Information
Wind and Structures / v.19, no.1, 2014 , pp. 35-58 More about this Journal
Abstract
A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.
Keywords
membrane structures; vibration under wind actions; fluid-structure interaction; numerical simultaneous solution;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhang, L.Q., Li, H., Wu, Y. and Shen, S.Z. (2005), "Identification of wind vibration frequency and aerodynamic damping of cable-membrane structures base on wavelet transformation", Proceedings of the 12th National Academic Conference on Wind Engineering, China, October.
2 Zienkiewicz, O.C. and Zhu, J.Z. (1992a), "The super convergent patch recovery and a posteriori error estimates, Part 1: the recovery technique", Int. J. Numer. Meth. Eng., 33(7), 1331-1364.   DOI
3 Li, H.N., Yi, T.H., Jing, Q.Y., Huo, L.S. and Wang, G.X. (2012), "Wind-induced vibration control of Dalian international trade mansion by tuned liquid dampers". Math. Probl. Eng., 2012(2012), 1-20.
4 Lima, A.L.F., Silva, E., Silveira-Neto, A. and Damasceno, J.J.R (2003), "Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method", J. Comput. Phys., 189(2), 351-370.   DOI
5 Mao, G.D., Sun, B.N. and Lou, W.J. (2004), "The added air mass for membrane structures", Eng. Mech., 21(1), 153-158.
6 Marukawa, H., Katon, N., Fujii, K. and Tamura, Y. (1996), "Experimental evaluation of aerodynamic damping of tall buildings", J. Wind Eng. Aerod., 59(2-3), 177-190.   DOI
7 Michalski, A, Haug, E., Bradatsch, J. and Bletzinger, K.U. (2009), "Virtual design methodology for lightweight structures - aerodynamic response of membrane structures", Int. J. Space Struct., 24(4), 211-221.   DOI   ScienceOn
8 Michalski, A., Kermel, P.D., Haug, E., Lohner, R., Wuchner, R. and Bletzinger, K.U. (2011), "Validation of the computational fluid-structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow", J. Wind Eng. Aerod., 99(4), 400-413.   DOI
9 Achenbach, E. (1968), "Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re=5? 106", J. Fluid Mech., 34, 625-639.   DOI
10 Bathe, K.J. and Ledezma, G.A. (2007), "Benchmark problems for incompressible fluid flows with structural interactions", Comput. Struct., 85(11-14), 628-644.   DOI   ScienceOn
11 Richter, T. (2013), "A fully Eulerian formulation for fluid-structure-interaction problems", J. Comput. Phys., 233, 227-240.   DOI
12 Zienkiewicz, O.C. and Zhu, J.Z. (1992b), "The super convergent patch recovery and a posteriori error estimates, Part 2: error estimates and adaptivity", Int. J. Numer. Meth. Eng., 33(7), 1365-1382.   DOI
13 Park, J., Kwon, K. and Choi, H. (1998), "Numerical solutions of flow past a circular cylinder at Reynolds number up to 160", J. Mech. Sci. Technol., 12(6), 1200-1205.
14 Revuz, J., Hargreaves, D.M. and Owen, J.S. (2012), "On the domain size for the steady-state CFD modelling of a tall building", Wind Struct., 15(3), 313-329.   DOI   ScienceOn
15 Singh, S.P. and Mittal, S. (2005), "Flow past a cylinder: shear layer instability and drag crisis", Int. J. Numer. Meth. Fl., 47(1), 75-98.   DOI   ScienceOn
16 Stein, K., Tezduyar, T. and Benney, R. (2003), "Mesh moving techniques for fluid-structure interactions with large displacements", J. Appl. Mech. - T ASME, 70(1), 58-63.   DOI
17 Sun, X.Y. (2007), Study on wind-structure interaction in wind-induced vibration of membrane structures, Ph.D. Thesis, Harbin Institute of Technology, China.
18 Turek, S. and Hron, J. (2006), Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, Lecture Notes in Computational Science and Engineering .
19 Uematsu, Y. and Isyumov, N. (1999), "Wind pressures acting on low-rise building", J. Wind Eng. Ind. Aerod., 82(1-3), 1-25.   DOI   ScienceOn
20 Catalano, P., Wang, M., Iaccarino, G. and Moin, P. (2003), "Numerical simulation of the flow around a circular cylinder at high Reynolds numbers", Int. J. Heat Fluid Fl., 24 (4), 463-469.   DOI
21 Degroote. J., Bathe, K.J. and Vierendeels J. (2009), "Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction", Comput. Struct., 87(11-12), 793-801.   DOI
22 Etienne, S. and Pelletier, D. (2004), "A monolithic formulation for steady-state fluid-structure interaction problems", Proceedings of the 34th AIAA Fluid Dynamics Conference and Exhibition, Portland, Oregon, U.S.A., 28 June - 01 July.
23 Forster. C., Wall, W.A. and Ramm, E. (2005), "On the geometric conservation law in transient flow calculations on deforming domains", Int. J. Numer. Meth. Fl., 50(12), 1369-1379.
24 Gil, A.J. (2006), "Structural analysis of prestressed Saint Venant-Kirchhoff hyperelastic membranes subjected to moderate strains", Comput. Struct., 84(15-16), 1012-1028.   DOI
25 Habchi, C., Russeil, S. and Bougeard, D. (2013), "Partitioned solver for strongly coupled fluid-structure interaction", Comput. Fluids, 71, 306-319.   DOI   ScienceOn
26 Hachem, E., Feghali, S., Codina, R. and Coupez, T. (2013), "Anisotropic adaptive meshing and monolithic Variational Multiscale method for fluid-structure interaction", Comput. Struct., 122, 88-100.   DOI
27 Heil, M. (2004), "An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems", Comput. Method. Appl. M., 193(1-2), 1-23.   DOI   ScienceOn
28 Wuchner, R., Kupzok, A. and Bletzinger, K. (2007), "A framework for stabilized partitioned analysis of thin membrane - wind interaction", Int. J. Numer. Meth. Fl., 54(6-8), 945-963.   DOI   ScienceOn
29 Ye, T., Mittal, R., Udaykumar, H.S. and Shyy, W. (1999), "An accurate Cartesian grid method for viscous incompressible flows with complex boundaries", J. Comput. Phys., 156(2), 209-240.   DOI   ScienceOn
30 Yang, Y., Gu, M., Chen, S. and Xinyang, J. (2009), "New inflow boundary conditions for modeling equilibrium atmosphere boundary layer in CWE", J. Wind Eng. Ind. Aerod., 97(2), 88-95.   DOI   ScienceOn
31 Hoffman, J. and Jansson, N.A. (2011), A Computational study of turbulent flow separation for a circular cylinder using skin friction boundary conditions, Quality and reliability of large-eddy simulations II; ERCOFTAC series, Netherlands: Springer.
32 Hubner, B., Walhorn, E. and Dinkler, D. (2004), "A monolithic approach to fluid-structure interaction using space-time finite elements", Comput. Method. Appl. Mech. Engrg., 193(23-26), 2087-2104.   DOI   ScienceOn
33 James, W.D., Paris, S.W. and Malcolm, G.N. (1980), "Study of viscous crossflow effects on circular cylinders at high Reynolds numbers", AIAA J., 18(9), 1066-1072.   DOI
34 Li ,C., Li, Q.S., Huang, S.H., and Xiao, Y.Q. (2010), "Large eddy simulation of wind loads on a long-span spatial lattice roof", Wind Struct., 13(1), 57-83.   DOI
35 Stein, K., Tezduyar, T. and Benney, R. (2003), "Mesh moving techniques for fluid-structure interactions with large displacements", J. Appl. Mech. - T ASME, 70(1),58-63.   DOI
36 Yang, W., Quan, Y., Xinyang, J., Tamura, Y. and Gu, M. (2008), "On the influences of equilibrium atmosphere boundary layer and turbulence parameters in CWE", J. Wind Eng. Ind. Aerod., 96(10-11), 2080-2092.   DOI   ScienceOn
37 Minami, H., Okuda, Y. and Kawamura, S. (1996), "The critical condition for occurrence of fluttering of membrane suspended in uniform air flow", J. Wind Eng., 1996(66), 27-34.   DOI
38 Gluck, M., Breuer, M., Durst, F., Halfmann, A. and Rank, E (2003), "Computation of wind-induced vibrations of flexible shells and membranous structures", J. Fluid. Struct., 17(5), 739-765.   DOI   ScienceOn