• Title/Summary/Keyword: membership

Search Result 1,905, Processing Time 0.027 seconds

Effects of Seasonal and Membership Characteristics on Public Bicycle Traffic : Focusing on the Seoul Bike (계절 및 회원 특성이 공공자전거 통행에 미치는 영향분석 : 서울시 따릉이를 대상으로)

  • Jang, Jae min;Lee, Soong bong;Lee, Young-Inn;Lee, Mu Young
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.47-58
    • /
    • 2018
  • PURPOSES : Seoul introduced public bicycles to reduce environmental pollution and create a healthy society. Because the use of bicycles is highly weather dependent, and bicycles are rented by the people, member characteristics and seasonal influences should be considered. This study analyzed bicycle traffic characteristics considering seasonal and member characteristics and highlighted some implications. METHODS : The Yeouido and Sangam districts, which have multiple business districts, were taken as the areas of interest. In order to reflect seasonal and membership characteristics, the traffic volume, time of use, and characteristics of each zone were categorized by season (spring, summer, autumn, winter) and membership type (season, daily, group). In addition, we analyzed the pattern of traffic volume and usage time according to the traffic purpose after separating rental locations into residential, business, subway, and park, reflecting the land characteristics. RESULTS : The results revealed that seasonal characteristics were high for bicycle traffic, time of use, and occupancy rate for park locations in spring and autumn. In terms of membership characteristics, group and daily users appeared as major visitors for park locations, and the trends of commuter pass users showed that bicycle use meets the purpose of introducing public bicycles. CONCLUSIONS : Traffic characteristics differed according to seasonal and membership characteristics. It is necessary to involve and extend the users of the commuter pass. Situations in which commuter pass users cannot function as a group or in which daily users monopolize bicycles (especially near parks, near subway stations, etc.) must be avoided.

Design of a Classifier Based on Supervised Learning Using Fuzzy Membership Function and Weighted Average (퍼지 소속도 함수와 가중치 평균을 이용한 지도 학습 기반 분류기 설계)

  • Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.508-514
    • /
    • 2021
  • In this paper, to propose a classifier based on supervised learning, three types of fuzzy membership functions that determine the membership of each feature of classification data are proposed. In addition, the possibility of improving the classifier performance was suggested by using the average value calculation method used in the process of deriving the classification result using the average value of the membership degrees for each feature, not by using a simple arithmetic average, but by using a weighted average using various weights. To experiment with the proposed methods, three standard data sets were used: Iris, Ecoli, and Yeast. As a result of the experiment, it was confirmed that evenly excellent classification performance can be obtained for data sets of different characteristics. It was confirmed that better classification performance is possible through improvement of fuzzy membership functions and the weighted average methods.

효율적 Mobile-CRM 구현 방향에 관한 연구

  • 임영문;김흥기
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.269-273
    • /
    • 2001
  • Nowadays the most important thing is not to gather new membership but to manage existing membership with useful information in electronic commerce system. To satisfy various customers, it is vital to understand and analyze customer's need. This paper presents the modeling method for efficient marketing system in mobile commerce.

  • PDF

퍼지 학습 규칙을 이용한 퍼지 신경회로망

  • 김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.180-184
    • /
    • 1997
  • This paper presents the fuzzy neural network which utilizes a fuzzified Kohonen learning uses a fuzzy membership value, a function of the iteration, and a intra-membership value instead of a learning rate. The IRIS data set if used to test the fuzzy neural network. The test result shows the performance of the fuzzy neural network depends on k and the vigilance parameter T.

  • PDF

Entropy of image fuzzy number by extension principle

  • Hong, Dug-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.5-8
    • /
    • 2002
  • In this paper, we introduce a simple new method on calculating the entropy of the image fuzzy set gotten by the extension principle without calculating its membership function.

A design of fuzzy pattern matching classifier using genetic algorithms and its applications (유전 알고리즘을 이용한 퍼지 패턴 매칭 분류기의 설계와 응용)

  • Jung, Soon-Won;Park, Gwi-Tae
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.87-95
    • /
    • 1996
  • A new design scheme for the fuzzy pattern matching classifier (FPMC) is proposed. in conventional design of FPMC, there are no exact information about the membership function of which shape and number critically affect the performance of classifier. So far, a trial and error or heuristic method is used to find membership functions for the input patterns. But each of them have limits in its application to the various types of pattern recognition problem. In this paper, a new method to find the appropriate shape and number of membership functions for the input patterns which minimize classification error is proposed using genetic algorithms(GAs). Genetic algorithms belong to a class of stochastic algorithms based on biological models of evolution. They have been applied to many function optimization problems and shown to find optimal or near optimal solutions. In this paper, GAs are used to find the appropriate shape and number of membership functions based on fitness function which is inversely proportional to classification error. The strings in GAs determine the membership functions and recognition results using these membership functions affect reproduction of next generation in GAs. The proposed design scheme is applied to the several patterns such as tire tread patterns and handwritten alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF

Classification of Epilepsy Using Distance-Based Feature Selection (거리 기반의 특징 선택을 이용한 간질 분류)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.321-327
    • /
    • 2014
  • Feature selection is the technique to improve the classification performance by using a minimal set by removing features that are not related with each other and characterized by redundancy. This study proposed new feature selection using the distance between the center of gravity of the bounded sum of weighted fuzzy membership functions (BSWFMs) provided by the neural network with weighted fuzzy membership functions (NEWFM) in order to improve the classification performance. The distance-based feature selection selects the minimum features by removing the worst features with the shortest distance between the center of gravity of BSWFMs from the 24 initial features one by one, and then 22 minimum features are selected with the highest performance result. The proposed methodology shows that sensitivity, specificity, and accuracy are 97.7%, 99.7%, and 98.7% with 22 minimum features, respectively.

The Roles of Study Habits and Emotional-behavioral Problems in Predicting School Adjustment Classification Among 3rdGraders (초등학교 3학년 아동의 학교적응 유형을 예측하는 학습습관과 정서행동문제의 역할)

  • Sung, Miyoung;Chang, Young Eun;Seo, Byungtae
    • Korean Journal of Childcare and Education
    • /
    • v.12 no.6
    • /
    • pp.79-102
    • /
    • 2016
  • The purpose of this study was to identify school adjustment groups by applying a Latent Profile Analysis(LPA) and to investigate the effects of children's emotional problems and study habits on determining the membership of these groups. LPA and multiple logistic regression were conducted using the data of 2,200 third-graders from the Korean Children and Youth Panel Study. The results are listed as follows. First, four school adjustment groups were identified: adjustment, approach to adjustment, maladjustment risk, and maladjustment group. Second, accomplishment value and mastery goal orientation were relatively strong predictors of membership of the school adjustment groups. Time management was also a significant variable that predicted the membership of maladjustment or the maladjustment-risk group. Third, attention problems and depression were the most consistent predictors of membership of maladjustment or the maladjustment-risk group. Physical symptoms and social withdrawal were also significant. Based on the results, implications for intervention to promote early school adjustment were discussed.

Fuzzy Group Decision Making for Multiple Decision Maker-Multiple Objective Programming Problems

  • Yano, Hitoshi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.380-383
    • /
    • 2003
  • In this paper, we propose a fuzzy group decision making method for multiple decision maker-multiple objective programming problems to obtain the agreeable solution. In the proposed method, considering the vague nature of human subjective judgement it is assumed that each of multiple decision makers has a fuzzy goal for each of his/her own objective functions. After eliciting the membership functions from the decision makers for their fuzzy goals, total M-Pareto optimal solution concept is defined in membership spaces in order to deal with multiple decision maker-multiple objective programming problems. For generating a candidate of the agreeable solution which is total M-Pareto optimal, the extended weighted minimax problem is formulated and solved for some weighting vector which is specified by the decision makers in their subjective manner, Given the total M-Pareto optimal solution, each of the derision makers must either be satisfied with the current values of the membership functions, or update his/her weighting vector, However, in general, it seems to be very difficult to find the agreeable solution with which all of the decision makers are satisfied perfectly because of the conflicts between their membership functions. In the proposed method, each of the decision makers is requested to estimate the degree of satisfaction for the candidate of the agreeable solution. Using the estimated values or satisfaction of each of the decision makers, the core concept is desnfied, which is a set of undominated candidates. The interactive algorithm is developed to obtain the agreeable solution which satisfies core conditions.

  • PDF

Fuzzy Traffic Controller with Control Rules and Membership Functions Generated by Genetic Algorithms (유전 알고리즘에 의해 생성된 제어규칙과 멤버쉽함수를 갖는 퍼지 교통 제어기)

  • Kim, Byeong-Man;Kim, Jong-Wan;Huh, Nam-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.123-128
    • /
    • 2002
  • A fuzzy traffic controller with the control rules and the membership functions generated by using genetic algorithm is presented for crossroad management. Conventional fuzzy traffic controllers use control rules and membership functions generated by human operators. However, this approach does not guarantee the optimal solution to design fuzzy control system. Genetic algorithm is a good solution for an optimal problem requiring domain-specific knowledge that is often heuristic. In this paper, we use genetic algorithms to automatically determine the near optimal rules and their membership functions of fuzzy traffic controllers. The effectiveness of our method was shown through simulation of crossroad network.