DOI QR코드

DOI QR Code

Design of a Classifier Based on Supervised Learning Using Fuzzy Membership Function and Weighted Average

퍼지 소속도 함수와 가중치 평균을 이용한 지도 학습 기반 분류기 설계

  • Woo, Young Woon (Division of Creative Software Eng., Dong-eui University)
  • Received : 2021.03.19
  • Accepted : 2021.04.01
  • Published : 2021.04.30

Abstract

In this paper, to propose a classifier based on supervised learning, three types of fuzzy membership functions that determine the membership of each feature of classification data are proposed. In addition, the possibility of improving the classifier performance was suggested by using the average value calculation method used in the process of deriving the classification result using the average value of the membership degrees for each feature, not by using a simple arithmetic average, but by using a weighted average using various weights. To experiment with the proposed methods, three standard data sets were used: Iris, Ecoli, and Yeast. As a result of the experiment, it was confirmed that evenly excellent classification performance can be obtained for data sets of different characteristics. It was confirmed that better classification performance is possible through improvement of fuzzy membership functions and the weighted average methods.

본 논문에서는 지도 학습 기반의 분류기 제안을 위해, 분류 데이터의 각 특징별 소속도를 결정하는 3가지 종류의 퍼지 소속도 함수를 제안하였다. 또한 각 특징별 소속도들의 평균값을 이용하여 분류 결과를 도출하는 과정에 사용되는 평균값 산출 기법을 단순 산술평균이 아닌 다양한 가중치를 활용한 가중치 평균을 이용함으로써 분류기 성능을 향상시킬 수 있는 가능성을 제시하였다. 제안한 기법들의 실험을 위해 Iris, Ecoli, Yeast의 3가지 표준 데이터 세트를 사용하였다. 실험 결과, 서로 다른 특성의 데이터 세트들에 대해서도 고르게 우수한 분류 성능이 얻어질 수 있음을 확인하였고, 기존에 발표된 다른 기법들에 의한 해당 데이터 세트들의 분류 성능과 비교했을 때, 퍼지 소속도 함수의 개선과 가중치 평균 기법의 개선을 통해 더욱 우수한 분류 성능이 가능함을 확인할 수 있었다.

Keywords

Acknowledgement

This work was supported by Dong-eui University Foundation Grant(2017).

References

  1. C. Augenstein, N. Spangenberg, and B. Franczyk, "Applying machine learning to big data streams : An overview of challenges," 2017 IEEE 4th International Conference on Soft Computing & Machine Intelligence (ISCMI), pp. 25-29, Nov. 2017.
  2. H. J. Kim, Pattern Recognition and Machine Learning, Jpub, Seoul, 2018.
  3. G.-W. Lee, H. Lee, and H.-W. Cheong, "Object Detection of AGV in Manufacturing Plants using Deep Learning," Journal of the Korea Institute of Information and Communication Engineering, vol. 25 no. 1, pp. 36-43, 2021. https://doi.org/10.6109/JKIICE.2021.25.1.36
  4. M. Sewak, S. K. Sahay, and H. Rathore, "An Overview of Deep Learning Architecture of Deep Neural Networks and Autoencoders," Journal of Computational and Theoretical Nanoscience, vol. 17, no. 1, pp. 182-188, Jan. 2020. https://doi.org/10.1166/jctn.2020.8648
  5. S. Behera and M. N. Mohanty, "Classification of EEG Signal Using SVM," Advances in Electrical Control and Signal Systems, vol. 665, pp. 859-869, Jul. 2020. https://doi.org/10.1007/978-981-15-5262-5_65
  6. H. Wang, Z. Xu, and W. Pedrycz, "An overview on the roles of fuzzy set techniques in big data processing: Trends, challenges and opportunities," Knowledge-Based Systems, vol. 118, pp. 15-30, Feb. 2017. https://doi.org/10.1016/j.knosys.2016.11.008
  7. M. Granik and V. Mesyura, "Fake news detection using naive Bayes classifier," 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, UKraine, pp. 900-903, 2017. doi: 10.1109/UKRCON.2017.8100379.
  8. UCI Machine Learning Repository [internet]. Available: https://archive.ics.uci.edu/ml/index.php.
  9. A. Kandel, Fuzzy Techniques in Pattern Recognition, John Wiley & Sons Inc., New Jersey, 1982.
  10. S. H. Shin, J. H. Cho, and Y. W. Woo, "Weight Adjustment Methods Based on Statistical Information for Fuzzy Weighted Mean Classifiers," Journal of the Korea Society of Computer and Information, vol. 14, no. 7, pp. 9-15, Jul. 2009.
  11. S. Han and Y. W. Woo, "Fuzzy Classifier and Bispectrum for Invariant 2-D Shape Recognition," Journal of Korea Multimedia Society, vol. 3, no. 3, pp. 241-252, Mar. 2000.
  12. K-fold Corss Validation [Internet]. Available: https://medium.datadriveninvestor.com/k-fold-cross-validation-6b8518070833.
  13. D. Kharche, K. Rajeswari, and D. Abin, "Comparison of Different Data Set Using Various Classification Techniques with WEKA," International Journal of Computer Science and Mobile Computing, vol. 3, no. 4, pp. 389-393, Apr. 2014.
  14. Which Machine Learning Classifier Is the Best on 18 UCI Datasets? [internet]. Available: https://abidlabs.github.io/uci-datasets.
  15. R. Cerri, R. R. O. da Silva, and A. C. P. L. F. de Carvalho, "Comparing Methods for Multilabel Classification of Proteins Using Machine Learning Techniques," Lecture Notes in Computer Science, vol. 5676, pp. 109-120, Jul. 2009.