• Title/Summary/Keyword: melting study

검색결과 1,650건 처리시간 0.039초

구역용융법으로 제작된 NdBaCuO 초전도체의 산소흡착 특성 (Oxygenation of Zone-melting NbBaCuO superconductor)

  • Soh, Dea-Wha;Fan, Zhanguo;Kim, Hee-Nam;Li, Xinyu;Gao, Weiying;Kim, Tae-Wan
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.292-295
    • /
    • 2001
  • The NdBaCuO superconducting samples were prepared by the Zone melting under low oxygen partial pressure. After the zone-melting the oxygenation process of the NdBaCuO samples in a oxygen flow furnace was studied. In order to compare the oxygenation condition the sintering NdBaCuO samples were studied also. In the study it is found that the optimum temperature for the oxygenation is $350^{\circ}C$, and the oxygen flow speed, the sample volume and the surface area of the sample would influence the oxygenation and the oxygen content.

  • PDF

ESR공정분석 밑 해석 모델렁을 통한 최적 공정 선정 밑 제어에 대한 연구 (A Study on a control algorithm and determinant of an optimal process condition based upon ESR process analysis.)

  • 부광석;위철민;임태균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.352-352
    • /
    • 2000
  • ESR(ElectroSlag Remelting) Process is secondary fine process and melts steels by electric resistance heat and fines the melting steels by an appropriate solidification process parameters which affects the melting and solidification processes to get the high quality products. This paper describes a method to derive the mathematical model and analysis the dynamic characteristics for designing a controller of the ESR processes. The ESR process consists of a melting and solidificating processes and electrical system include the contact resistance mechanism. In this paper, we consider only the static relationship between inputs and outputs of the electric system because the dynamics of the electric system is so fast compared with the melting and solidificating processes which are analysed by using finite difference method. As the results, the fine processing in ESR is analysed and the process controller could be designed based on the process dynamic analysis.

  • PDF

Ar의 녹는점에 관한 분자동역학적 고찰 (Study on the Melting Point of Ar by Molecular Dynamic Simulation)

  • 정재동
    • 설비공학논문집
    • /
    • 제19권12호
    • /
    • pp.883-888
    • /
    • 2007
  • As a starting point of investigating what molecular dynamic simulations can reveal about the nature of atomic level of heating and cooling process, argon described by the LJ potential is considered. Stepwise heating and cooling of constant rates are simulated in the NPT (constant number, pressure and temperature) ensemble. Hysteresis is found due to the superheating and supercooling. Drastic change of volume and energy is involved with phase change, but the melting point can not be obtained by simply observing the changes of these quantities. Since liquid and solid phases can co-exist at the same temperature, Gibbs free energy should be calculated to find the temperature where the Gibbs free energy of liquid is equal to that of the solid since the equilibrium state is the state of minimum Gibbs free energy. The obtained melting temperature, $T^*=0.685$, is close to that of the experiment with only 2% error.

구역용융법으로 제작된 NdBaCuG 초전도체의 산소흡착 특성 (Oxygenation of Zone-melting NdBaCuG Superconductor)

  • Soh, Dea-Wha;Fan, Zhanguo;Kim, Hee-Nam;Li, Xinyu;Gao, Weiying;Kim, Tae-Wan
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.292-295
    • /
    • 2001
  • The NdBaCuO superconducting samples were prepared by the Zone melting under low oxygen partial pressure. After the zone-melting the oxygenation process of the NdBaCuO samples in a oxygen flow furnace was studied. In order to compare the oxygenation condition the sintering NdBaCuO samples were studied also. In the study it is found that the optimum temperature for the oxygenation is $350{\circ}C$, and the oxygen flow speed, the sample volume and the surface area of the sample would if1uence the oxygenation and the oxygen content.

  • PDF

In 계 저융점합금의 닥터 블레이드 테이프캐스팅 (Doctor Blade Tape Casting of In-based Low Melting Point Alloy)

  • 윤기병
    • 한국주조공학회지
    • /
    • 제35권3호
    • /
    • pp.62-66
    • /
    • 2015
  • Tape casting is an important forming operation used to prepare flat sheets in the various industries. In this study, Doctor Blade tape casting of In-based low melting point alloy was carried out. The purpose of this investigation was to determine the possibility of applying the Doctor Blade tape casting process to the manufacture of low melting point alloy sheets that can be used as thermal fusible parts of battery safety systems. In-based molten alloy that has a melting point of $95^{\circ}C$ was produced; it's viscosity was measured at various temperatures. The molten alloy was used as a slip in the caster of the Doctor Blade tape casting system. The effects of the molten alloy temperatures and carrier speeds on the produced sheet shape were observed. For the casting conditions of 1.5 cm slip height, $120^{\circ}C$ slip temperature, 0.05 mm blade gap and 60 m/min. carrier speed, an In-based alloy thin tape well shaped with 0.16 mm uniform thickness was continuously produced.

A Study on a control algorithm and determinant of an optimal process condition based upon ESR process analysis.

  • Hyun, Lim-Sung;Suck, Boo-Kwang;Gyoon, Lim-Tae;Min, Wi-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.76.4-76
    • /
    • 2001
  • ESR(ElectroSlag Remelting) Process is secondary fine process and melts steels by electric resistance heat and fines the melting steels by an approproate solidification process. The final products are determined through the velocity of melting and the course of solidification in the process that is achieved by way of proper course of solidification. Thus, it is very important to monitor and control the process parameters which affects the melting and solidification process to get the high quality products. This paper describes a method to derive the mathematical model and analysis the dynamic characteristics for designing a controller of the ESR processes. The process consists of a melting and solidifying process and electrical system include the contact resistance mechanism ...

  • PDF

Powder Bed Fusion 방식 금속 적층 제조 방식 기술 분석 (Status Quo of Powder Bed Fusion Metal Additive Manufacturing Technologies)

  • 황인석;신창섭
    • 한국기계가공학회지
    • /
    • 제21권7호
    • /
    • pp.10-20
    • /
    • 2022
  • Recently, metal additive manufacturing (AM) is being investigated as a new manufacturing technology. In metal AM, powder bed fusion (PBF) is a promising technology that can be used to manufacture small and complex metallic components by selectively fusing each powder layer using an energy source such as laser or an electron beam. PBF includes selective laser melting (SLM) and electron beam melting (EBM). SLM uses high power-density laser to melt and fuse metal powders. EBM is similar to SLM but melts metals using an electron beam. When these processes are applied, the mechanical properties and microstructures change due to the many parameters involved. Therefore, this study is conducted to investigate the effects of the parameters on the mechanical properties and microstructures such that the processes can be performed more economically and efficiently.

Microstructure and Hardness of Surface Melting Hardened Zone of Mold Steel, SM45C using Yb:YAG Disk Laser

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yoon, Tae-Jin;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.75-81
    • /
    • 2016
  • This study applied laser surface melting process using CW(Continuous wave) Yb:YAG laser and cold-work die steel SM45C and investigated microstructure and hardness. Laser beam speed, power and beam interval are fixed at 70 mm/sec, 2.8 kW and $800{\mu}m$ respectively. Depth of Hardening layer(Melting zone) was a minimum of 0.8 mm and a maximum of 1.0 mm that exceeds the limit of minimum depth 0.5 mm applying trimming die. In all weld zone, macrostructure was dendrite structure. At the dendrite boundary, Mn, Al, S and O was segregated and MnS and Al oxide existed. However, this inclusion didn't observe in the heat-affected zone (HAZ). As a result of interpreting phase transformation of binary diagram, MnS crystallizes from liquid. Also, it estimated that Al oxide forms by reacting with oxygen in the atmosphere. The hardness of the melting zone was from 650 Hv to 660 Hv regardless of the location that higher 60 Hv than the hardness of the HAZ that had maximum 600 Hv. In comparison with the size of microstructure using electron backscatter diffraction(EBSD), the size of microstructure in the melting zone was smaller than HAZ. Because it estimated that cooling rate of laser surface melting process is faster than water quenching.

솔더 페이스트의 용융현상 연구 (A Study on Melting Phenomena of Solder Paste)

  • 김문일;안병용;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제8권1호
    • /
    • pp.5-11
    • /
    • 2001
  • SMT(Surface Mount Technology)패키징 공정에서 발생하는 솔더 페이스트의 용융거동과 브릿지 현상을 관찰하였다. 이를 위하여 Cu 패드위에 Sn-37%Pb 조성의 솔더 페이스트를 인쇄하였으며, 인쇄된 PCB기판을 솔더의 융점($183^{\circ}C$)이상으로 가열하였다. 이 때에 페이스트의 용융거동을 조사하기 위하여 CCD카메라를 이용하여 근접촬영하였다. 솔더링시 솔더 페이스트가 용융.응집되는 과정을 규명하기 위하여 동일한 조성의 0.76 mm직경을 갖는 두 개의 솔더 볼을 사용하여 모델링 하였다. 솔더 페이스트의 용융거동을 관찰한 결과 페이스트는 인쇄된 부분의 가장자리에서 안쪽으로 녹아들어가는 모습을 보였다. 또한, 페이스트의 높이는 가열 초기 270 $\mu\textrm{m}$에서 가열후 약 35초 경과시 200 $\mu\textrm{m}$로 줄어들었다가 최종적으로 250 $\mu\textrm{m}$로 다시 증가하였으며, 이 때 용융된 페이스트 내에서 기포가 방출되었다. 솔더볼의 용융모델에서 용융온도가 $280^{\circ}C$인 경우에 솔더볼의 접촉면적과 솔더링 시간 사이에는 $\chi^2/t=4r \; \gamma/\eta=7.56 m^2$/s의 관계식이 성립됨을 알 수 있었다.

  • PDF

P2O5-SnO2계 유리에서 용융분위기에 따른 구조와 물성에 미치는 영향 (Effect of Melting Atmospheres on the Structure and Properties of P2O5-SnO2 Glass Systems)

  • 안용태;최병현;지미정;권용진;배현;황해진
    • 한국세라믹학회지
    • /
    • 제49권2호
    • /
    • pp.191-196
    • /
    • 2012
  • In this study, tin phosphate glass system($SnO_2-(1-x)P_2O_5-xB_2O_3$) that occur during the melting of the metal oxide inhibition of the oxidation reaction, and to reduce oxides of high melting temperature in the following three methods were melting. The first is the general way in the atmosphere, and the second by injecting $N_2$ gas under a neutral atmosphere, and finally in the air were melted by the addition of a reducing agent Melt in the atmosphere when the oxidation of the metal oxide is inhibited by low temperatures were melting. In addition, the deposition of crystals within glassy or inhibit devitrification phenomenon is also improved over 80% transmittance. This phenomenon, when the melting of glass, many of $Sn^{4+}$ ions are reduced to the $Sn^{2+}$ was forming oxides SnO, because it acts as a modifier oxide.