Study on the Melting Point of Ar by Molecular Dynamic Simulation

Ar의 녹는점에 관한 분자동역학적 고찰

  • Published : 2007.12.10

Abstract

As a starting point of investigating what molecular dynamic simulations can reveal about the nature of atomic level of heating and cooling process, argon described by the LJ potential is considered. Stepwise heating and cooling of constant rates are simulated in the NPT (constant number, pressure and temperature) ensemble. Hysteresis is found due to the superheating and supercooling. Drastic change of volume and energy is involved with phase change, but the melting point can not be obtained by simply observing the changes of these quantities. Since liquid and solid phases can co-exist at the same temperature, Gibbs free energy should be calculated to find the temperature where the Gibbs free energy of liquid is equal to that of the solid since the equilibrium state is the state of minimum Gibbs free energy. The obtained melting temperature, $T^*=0.685$, is close to that of the experiment with only 2% error.

Keywords

References

  1. Sethian, J. A., Level set methods, Cambridge University Press, 1996
  2. Lakehal, D., Meiser, M. and Fulgosi, M., 2002, Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows, Int. J. Heat Fluid Flow, Vol. 23, pp. 242-257 https://doi.org/10.1016/S0142-727X(02)00172-8
  3. Takewaki, H., Nishiguchi, A. and Yabe, T., 1985, Cubic interpolated pseudopartic1e method (CIP) for solving hyperbolic type equations, J. Comput. Phys., vol. 61, pp. 261-268 https://doi.org/10.1016/0021-9991(85)90085-3
  4. Consolini, L., Aggarwal, S. K. and Murad, S., 2003, A molecular dynamics simularion of droplet evaporation, Int. J. Heat Mass Transfer, Vol. 46, pp. 3179-3188 https://doi.org/10.1016/S0017-9310(03)00101-7
  5. Weng, J. G., Park, S. H., Lukes, J. R. and Tien, C. L., 2000, Molecular dynamics investigation of thickness effect on liquid films, J. Chem. Phys., Vol. 113, pp.5917-5923 https://doi.org/10.1063/1.1290698
  6. Park, S. H., Weng, J. G., and Tien, C. L., 2001, A molecular dynamics study on surface tension of microbubbles, Int. J. Heat Mass Transfer, Vol. 44, pp. 1849-1856 https://doi.org/10.1016/S0017-9310(00)00244-1
  7. Maruyama, S., Matsumoto, S. and Ogita, A., 1994, Surface phenomena of molecular clusters by molecular dynamics method, Thermal Sci. Eng., Vol. 2, pp.77-84
  8. Haile, J. M., Molecular dynamics simulation: elementary methods, John Wiley & Sons, Inc., New York, 1997
  9. Allen, M. P. and Tildesley, D. J., Computer simulation of liquid, Oxford University Press, Oxford, 1987
  10. Martyna, G.J., Tobias, D.J. and Klein, M. L., 1994, Constant pressure molecular dynamics algorithms, J. Chem. Phys., Vol. 101, pp.4177-4189 https://doi.org/10.1063/1.467468
  11. Feller, S. E., Zhang, Y, Pastor, R W. and Brooks, B. R, 1995, Constant pressure molecular dynamics simulation: The Langevin piston method, J. Chem. Phys., Vol.103, pp. 4613-4621 https://doi.org/10.1063/1.470648
  12. Tepper, H. L. and Briels, W., 2001, Crystallization and melting in the Lennard-Jones system: Equilibration, relaxation, and longtime dynamics of the moving interface, J. Chem. Phys., Vol. 115, pp.9434-9443 https://doi.org/10.1063/1.1413972
  13. McGaughey, A. J. H. and Kaviany, M., 2004, Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part 1. Lennard-Jones argon, Int. J. Heat Mass Transfer, Vol. 47, pp.1783-1798 https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.002
  14. Peterson, O. G., Batchelder, D. N. and Simmons, R. O., 1966, Measurements of X-ray lattice constant, thermal expansivity, and isothermal compressibility of argon crystals, Physical Review, Vol. 150, pp.703-711 https://doi.org/10.1103/PhysRev.150.703
  15. Johnson, J. K., Zollweg, A. and Gubbins, K. E., 1993, The Lennard-Jones equation of state revisited, Molecular Physics, Vol. 78, pp. 591-618 https://doi.org/10.1080/00268979300100411
  16. van der Hoef, M. A., 2000, Free energy of the Lennard-Jones solid, J. Chem. Phys., Vol. 113, pp.8142-8148 https://doi.org/10.1063/1.1314342
  17. Luo, S.-N., Strachan, A and Swift, D. C., 2004, Nonequilibrium melting and crystallization of a model Lennard-Jones system, J. Chem. Phys., Vol. 120, pp. 11640-11649 https://doi.org/10.1063/1.1755655