Browse > Article

Study on the Melting Point of Ar by Molecular Dynamic Simulation  

Chung, Jae-Dong (Mechanical Engineering, Sejong University)
Publication Information
Korean Journal of Air-Conditioning and Refrigeration Engineering / v.19, no.12, 2007 , pp. 883-888 More about this Journal
Abstract
As a starting point of investigating what molecular dynamic simulations can reveal about the nature of atomic level of heating and cooling process, argon described by the LJ potential is considered. Stepwise heating and cooling of constant rates are simulated in the NPT (constant number, pressure and temperature) ensemble. Hysteresis is found due to the superheating and supercooling. Drastic change of volume and energy is involved with phase change, but the melting point can not be obtained by simply observing the changes of these quantities. Since liquid and solid phases can co-exist at the same temperature, Gibbs free energy should be calculated to find the temperature where the Gibbs free energy of liquid is equal to that of the solid since the equilibrium state is the state of minimum Gibbs free energy. The obtained melting temperature, $T^*=0.685$, is close to that of the experiment with only 2% error.
Keywords
Molecular dynamics; Melting point; Hysteresis; Gibbs free energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Takewaki, H., Nishiguchi, A. and Yabe, T., 1985, Cubic interpolated pseudopartic1e method (CIP) for solving hyperbolic type equations, J. Comput. Phys., vol. 61, pp. 261-268   DOI   ScienceOn
2 Feller, S. E., Zhang, Y, Pastor, R W. and Brooks, B. R, 1995, Constant pressure molecular dynamics simulation: The Langevin piston method, J. Chem. Phys., Vol.103, pp. 4613-4621   DOI   ScienceOn
3 Tepper, H. L. and Briels, W., 2001, Crystallization and melting in the Lennard-Jones system: Equilibration, relaxation, and longtime dynamics of the moving interface, J. Chem. Phys., Vol. 115, pp.9434-9443   DOI   ScienceOn
4 Johnson, J. K., Zollweg, A. and Gubbins, K. E., 1993, The Lennard-Jones equation of state revisited, Molecular Physics, Vol. 78, pp. 591-618   DOI   ScienceOn
5 Consolini, L., Aggarwal, S. K. and Murad, S., 2003, A molecular dynamics simularion of droplet evaporation, Int. J. Heat Mass Transfer, Vol. 46, pp. 3179-3188   DOI   ScienceOn
6 Lakehal, D., Meiser, M. and Fulgosi, M., 2002, Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows, Int. J. Heat Fluid Flow, Vol. 23, pp. 242-257   DOI   ScienceOn
7 Haile, J. M., Molecular dynamics simulation: elementary methods, John Wiley & Sons, Inc., New York, 1997
8 van der Hoef, M. A., 2000, Free energy of the Lennard-Jones solid, J. Chem. Phys., Vol. 113, pp.8142-8148   DOI   ScienceOn
9 Luo, S.-N., Strachan, A and Swift, D. C., 2004, Nonequilibrium melting and crystallization of a model Lennard-Jones system, J. Chem. Phys., Vol. 120, pp. 11640-11649   DOI   ScienceOn
10 Weng, J. G., Park, S. H., Lukes, J. R. and Tien, C. L., 2000, Molecular dynamics investigation of thickness effect on liquid films, J. Chem. Phys., Vol. 113, pp.5917-5923   DOI   ScienceOn
11 Martyna, G.J., Tobias, D.J. and Klein, M. L., 1994, Constant pressure molecular dynamics algorithms, J. Chem. Phys., Vol. 101, pp.4177-4189   DOI   ScienceOn
12 Maruyama, S., Matsumoto, S. and Ogita, A., 1994, Surface phenomena of molecular clusters by molecular dynamics method, Thermal Sci. Eng., Vol. 2, pp.77-84
13 Peterson, O. G., Batchelder, D. N. and Simmons, R. O., 1966, Measurements of X-ray lattice constant, thermal expansivity, and isothermal compressibility of argon crystals, Physical Review, Vol. 150, pp.703-711   DOI
14 Park, S. H., Weng, J. G., and Tien, C. L., 2001, A molecular dynamics study on surface tension of microbubbles, Int. J. Heat Mass Transfer, Vol. 44, pp. 1849-1856   DOI   ScienceOn
15 McGaughey, A. J. H. and Kaviany, M., 2004, Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part 1. Lennard-Jones argon, Int. J. Heat Mass Transfer, Vol. 47, pp.1783-1798   DOI   ScienceOn
16 Sethian, J. A., Level set methods, Cambridge University Press, 1996
17 Allen, M. P. and Tildesley, D. J., Computer simulation of liquid, Oxford University Press, Oxford, 1987