• Title/Summary/Keyword: melt processing

Search Result 242, Processing Time 0.031 seconds

Preparation and Characterization of P-Type Thermoelectric $\beta-FeSi_2$ Containing Dispersed Si Phase(l)-Microstructural Evolution with Processing Conditions- (Si 분산 조직의 p형 $\beta-FeSi_2$ 열전재의 제조 및 특성(l)-제조 조건에 따른 미세조직의 변화-)

  • Min, Byeong-Gyu;Kim, Il-Ho;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.584-590
    • /
    • 1998
  • The microstructures of finely distributed Si-phases in $\beta$-$FeSi_2$ thermoelectric matrix, were produced by heat-treating the melt-cast ingots of single $\alpha$-$Fe_2Si_5$ phase at 730~85$0^{\circ}C$ for 4~20 hours, or by resistance-hot-pressing the mechanically alloyed powders ordinarily consisting of $\varepsilon$-FeSi and Si phases at 760~85$0^{\circ}C$ for 10 minutes of composition. $(Fe_{0.98}Mn_{0.02})_xSi_2(x{\leq$}1) The size and interspacing of dispersed Si-phases were able to control within a range of 0.05~0.27$\mu\textrm{m}$ and 0.2~0.6$\mu\textrm{m}$ by variations of heat treatment temperature and sintering temperature as well as the composition. respectively. The dispersion of Si- phases was expected to be effective for the reduction of thermal conductivity responsible for the increment of thermoelectric figure of merit.

  • PDF

AUTOMATIC MULTITORCH WELDING SYSTEM WITH HIGH SPEED

  • Moon, H.S;Kim, J.S.;Jung, M.Y.;Kweon, H.J.;Kim, H.S.;Youn, J.G.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.320-323
    • /
    • 2002
  • This paper presents a new generation of system for pressure vessel and shipbuilding. Typical pressure vessel and ship building weld joint preparations are either traditional V, butt, fillet grooves or have narrow or semi narrow gap profiles. The fillet and U groove are prevalently used in heavy industries and shipbuilding to melt and join the parts. Since the wall thickness can be up to 6" or greater, welds must be made in many layers, each layer containing several passes. However, the welding time for the conventional processes such as SAW(Submerged Arc Welding) and FCAW(Flux Cored Arc Welding) can be many hours. Although SAW and FCAW are normally a mechanized process, pressure vessel and ship structures welding up to now have usually been controlled by a full time operator. The operator has typically been responsible for positioning each individual weld run, for setting weld process parameters, for maintaining flux and wire levels, for removing slag and so on. The aim of the system is to develop a high speed welding system with multitorch for increasing the production speed on the line and to remove the need for the operator so that the system can run automatically for the complete multi-torch multi-layer weld. To achieve this, a laser vision sensor, a rotating torch and an image processing algorithm have been made. Also, the multitorch welding system can be applicable for the fine grained steel because of the high welding speed and lower heat input compare to a conventional welding process.

  • PDF

Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine (고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성)

  • 윤한기;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

Preparation of Cellulose Diacetate/Ramie Fiber Biocomposites by Melt Processing (용융가공법을 이용한 셀룰로오스 디아세테이트/라미섬유 천연복합체의 제조)

  • Lee Sang Hwan;Lee Sang Yool;Nam Jae Do;Lee Youngkwan
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.70-74
    • /
    • 2006
  • Plasticized cellulose diacetate(CDA) was prepared by homogenizing cellulose diacetate(CDA), triacetin(TA) and epoxidized soybean oil (ESO) in a high-speed mixer, then the CDA mixture was mixed with ramie fiber to produce a green composite material. In DMA analysis, the glass transition temperature of plasticized CDA and the composite was observed at $85\;^{\circ}C\;and\;140\;^{\circ}C$, respectively. A composite reinforced with alkali treated ramie fiber exhibited significantly higher mechanical properties, such as $15\;^{\circ}C$ increase in tensile strength as well as $41\;^{\circ}C$ increase in Young's modulus when compared with commercial polypropylene. In the SEM image analysis, much enhanced adhesion between plasticized CDA and alkali treated ramie fiber (AIRa) was observed.

Barrier Property and Morphology of Biaxially Oriented PP/EVOH Blend Film (이축연신 PP/EVOH 블렌드 필름의 차단 성질 및 모폴로지)

  • 여종호;이종훈;박찬석;이기준;남재도
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.820-828
    • /
    • 2000
  • In this study, biaxially oriented film process was used to improve barrier property of polypropylene (PP)/ethylene-vinyl alcohol copolymer (EVOH) blends by inducing a laminar morphology of the dispersed phase in the matrix phase. In order to examine the extent of deformation during melt extrusion process, the rheological properties of the resins were measured and the viscosity ratio of the dispersed phase to the continuous phase was determined. The effects of compatibilizer content, draw ratio, and draw temperature on the oxygen permeability and morphology of biaxially drawn blend films were studied. The laminar morphology of the EVOH phase with a larger area of thinner layer induced by biaxial orientation was found to result in a significant increase in oxygen barrier property of PP/EVOH (85/15) blends by about 10 times relative to the pure PP When both PP-g-MAH and ionomer were used as the compatibilizers, there existed an optimum level of compatibilizer content for obtaining improved barrier properties with a well developed laminar structure. In addition, higher draw ratio and draw temperature were found to be more favorable processing conditions in obtaining higher barrier blends.

  • PDF

The Formation Behavior of Non-metallic Inclusion in the Ce-added Hyper Duplex STS (Hyper Duplex STS 중 Ce 첨가 시 비금속개재물 생성거동)

  • Hong, S.H.;Jang, P.Y.;Park, Y.M.;Byun, S.M.;Kim, K.T.;You, B.D.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.311-319
    • /
    • 2010
  • Rare earth metal Ce has a relatively low melting point and high specific gravity. Because of its significantly high affinity to oxygen, nitrogen and sulfur, it is highly usable as a steel refining agent. However, because Ce compound has relatively high specific gravity, it is difficult to be separated from molten steel through floatation, and it degrades the purity of molten steel, or may clog the nozzle in continuous casting. Such problem may be solved by using an appropriate deoxidation agent together with Ce and settling molten steel sufficiently after refining. Thus a fundamental study in the formation behavior of non-metallic inclusion in Ce added Hyper Duplex STS melts was investigated. The addition amount of Ce, melt temperature were considered as experimental variables. A main non-metallic inclusion in mother alloy is 51(wt%MnO) - 27.6(wt%SiO$_2$)- 10.9(wt%$Cr_2O_3$). Non-metallic inclusion was dramatically decreased and the particle size was fined as the amount of Ce increased. Moreover (%MnO) and (%SiO$_2$) of non-metallic inclusion were decreased. But (%$Al_2O_3$)were relatively increased. The number of non-metallic inclusion were decreased and the large particle size were increased by increasing the temperature of molten steel.

Rheology of PP/Clay Hybrid Produced by Supercritical $CO_2$ Assisted Extrusion

  • Lee, Sang-Myung;Shim, Dong-Cheol;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.6-14
    • /
    • 2008
  • Polypropylene (PP)-layered silicate nanocomposites were developed using a new processing method involving a supercritical carbon dioxide ($scCO_2$)-assisted co-rotating twin-screw extrusion process. The nanocomposites were prepared through two step extrusion processes. In the first step, the PP/clay mixture was extruded with $CO_2$ injected into the barrel of the extruder and the resulting foamed extrudate was cooled and pelletized. In the second step, the foamed extrudate was extruded with venting to produce the final PP/clay nanocomposites without $CO_2$. In this study, organophilic-clay and polypropylene matrix were used. Maleic anhydride grafted polypropylene (PP-g-MA) was used as a compatibilizer. This study focused on the effect of $scCO_2$ on the dispersion characteristics of the clays into a PP matrix and the rheological properties of the layered silicate based PP nanocomposites. The dispersion properties of clays in the nanocomposites as well as the rheological properties of the nanocomposites were examined as a function of the PP-g-MA concentration. The degree of dispersion of the clays in the nanocomposites was analyzed by X-ray diffraction and transmission electron microscope. Various rheological properties of the nanocomposites were measured using a rotational rheometer. In the experimental results, the $scCO_2$ assisted continuous manufacturing extrusion system was used to successfully produce the organophilic-clay filled PP nanocomposites. It was found that $scCO_2$ had a measurable effect on the clay dispersion in the polymer matrix and the melt intercalation of a polymer into clay layers.

Fabrication of poly(ethylene oxide)/clay nanocomposites using supercritical fluid process (초임계 공정을 이용한 폴리에틸렌옥사이드/클레이 나노복합체 제조)

  • Kim, Yong-Ryeol;Jeong, Hyeon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.143-150
    • /
    • 2014
  • Recently, supercritical fluid process has been widely used in material synthesis and processing due to their remarkable properties such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive solvent owing to their characteristics including non-toxic, non-flammable, chemically inert, and also it has moderate critical temperature and critical pressure. In addition, supercritical carbon dioxide would dissolve many small organic molecules and most polymers. In this study, we have prepared the poly (ethylene oxide)/clay nanocomposites using supercritical fluid as a carbon dioxide. Commercialized Cloisites-15A and Cloisites-30B used in this study, which are modified with quaternary ammonium salts. The nanocomposites of polymer/clay were characterized by XRD, TGA and DSC. Poly (ethylene oxide)/clay nanocomposites by supercritical fluid show higher thermal stability than nanocomposites prepared by melt process. In addition, supercritical fluid process would be increased dispersibility of the nanoclay in the matrix.

A Study on the Electrochemical Properties Fabrication Process of Mg-Ca Sacrificial Anode for the Corrosion Protection of Steel Structures (철 구조물의 부식방지를 위한 Mg-Ca 희생양극의 전기화학적 특성과 제조에 관한 연구)

  • Park, Kang-Geun;Kim, Hye-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.73-80
    • /
    • 2006
  • It is an object of the present paper to investigate a electrochemical properties of Mg-based sacrificial anodes and the effect of calcium added from calcium chloride into magnesium on the melt protection during the melting. Electrochemical data will be correlated with processing control variables, and the microstructural change by the addition of CaCl2. Small addition of calcium into magnesium from CaCl2 imparts beneficial effect in electrochemical properties of Mg alloys, primarily, through microstructural modifications. In addition, the protection effect of the melts surface of Ca with low melting point modification is obtained by adding Ca not more than 0.6%.

  • PDF

Modeling of Billet Shape in Spray Forming Process (분무성형공정에서의 빌렛형상 모델링)

  • Jang, Dong-Hun;Gang, Sin-Il;Lee, Eon-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.961-970
    • /
    • 1997
  • A numerical method is presented to predict and analyze the shape of a growing billet produced from the "spray forming process" which is a fairly new near-net shape manufacturing process. It is important to understand the mechanism of billet growing because one can obtain a billet with the desired final shape without secondary operations by accurate control of the billet shape, and it can also serve as a base for heat transfer and deformation analysis. The shape of a growing billet is determined by the flow rate of the alloy melt, the mode of nozzle scanning which is due to cam profile, the initial positio of the spray nozzle, scanning angle, and the withdrawal speed of the substrate. In the present study, a theoretical model is first established to predict the shape of the billet and next the effects of the most dominent processing conditions, such as withdrawal speed of the substrate and the cam profile, on the shape of the growing billet are studied. Process conditions are obtained to produce a billet with uniform diameter and flat top surface, and an ASP30 high speed steel billet is manufactured using the same process conditions established from the simulation.imulation.