Preparation and Characterization of P-Type Thermoelectric $\beta-FeSi_2$ Containing Dispersed Si Phase(l)-Microstructural Evolution with Processing Conditions-

Si 분산 조직의 p형 $\beta-FeSi_2$ 열전재의 제조 및 특성(l)-제조 조건에 따른 미세조직의 변화-

  • Min, Byeong-Gyu (Dept. of Metallurgical Engineering, Yonsei University) ;
  • Kim, Il-Ho (Dept. of Materials Science and Engineering, Chungju National University) ;
  • Lee, Dong-Hui (Dept. of Metallurgical Engineering, Yonsei University)
  • 민병규 (연세대학교 금속공학과) ;
  • 김일호 (충주산업대학교 재료공학과) ;
  • 이동희 (연세대학교 금속공학과)
  • Published : 1998.07.01

Abstract

The microstructures of finely distributed Si-phases in $\beta$-$FeSi_2$ thermoelectric matrix, were produced by heat-treating the melt-cast ingots of single $\alpha$-$Fe_2Si_5$ phase at 730~85$0^{\circ}C$ for 4~20 hours, or by resistance-hot-pressing the mechanically alloyed powders ordinarily consisting of $\varepsilon$-FeSi and Si phases at 760~85$0^{\circ}C$ for 10 minutes of composition. $(Fe_{0.98}Mn_{0.02})_xSi_2(x{\leq$}1) The size and interspacing of dispersed Si-phases were able to control within a range of 0.05~0.27$\mu\textrm{m}$ and 0.2~0.6$\mu\textrm{m}$ by variations of heat treatment temperature and sintering temperature as well as the composition. respectively. The dispersion of Si- phases was expected to be effective for the reduction of thermal conductivity responsible for the increment of thermoelectric figure of merit.

$(Fe_{0.98}Mn_{0.02})_xSi_2(x{\leq$}1) 조성으로, 용융법으로 제조한 $\alpha$-$Fe_2Si_5$상의 잉곳을 730~85$0^{\circ}C$에서 4~20시간 열처리하거나, 기계적 합금화로 제조한 $\varepsilon$-FeSi과 Si상으로 구성된 분말을 760~85$0^{\circ}C$에서 10분간 가압통전소결하므로써 $\beta$-$FeSi_2$기지상에 Si이 분산된 미세조직을 얻을 수 있었다. 조성, 열처리 온도와 소결 온도에 따라 Si 분상의 크기와 간격이 각기 0.05~0.27$\mu\textrm{m}$와 0.2~0.6$\mu\textrm{m}$ 범위에서 변화하였다. 이와 같은 Si 분산상에 의해 $\beta$-$FeSi_2$의 격자 열전도도가 감소되어 성능지수가 향상될 수 있을 것으로 기대된다.

Keywords

References

  1. CRC handbook of thermoelectrics Minimizing the thermal conductivity C.M.Bhandari;D.M.Rowe
  2. Electronic refrigeration H.J.Goldsmid
  3. Proc. 12th ICT. v.115 K.W.Jang;D.H.Lee
  4. Proc. 13th ICT. v.110 N.Scoville;C.Bajgar;J.Rolfe;J.P.Fleurial;J.Vandersande
  5. J. Appl. Phys. v.52 no.12 D.W.Rowe;V.S.Shukla
  6. Proc. IEE. v.111 no.1 R.M.Ware;D.J.McNeill
  7. Phys. Rev. B. v.7 no.6 U.Birkholz;J.Schelm.
  8. Brit. J. Appl. Phys. v.15 D.J.McNeil;R.M.Ware
  9. Proc. 3rd IUMRS-ICA B.G.Min;Y.H.Eun;D.H.Lee
  10. Materials Transaction, JIM v.36 no.2 H.Nagai
  11. Materials Transactions, JIM v.36 no.2 M.Umemoto
  12. 한국재료학회 춘계학술발표회 초록집 v.64 민병규;이동희
  13. 대한금속학회지 v.30 no.8 최국선;김진영;이동희
  14. 한국전자현미경학회지 v.25 no.3 은영효;민병규;이동희
  15. Properties of Metal Silicides K.Maex;M.V.Rossum
  16. Phys. Stat. Sol. (a) v.15 G.Waldecker;H.Meinhold;U.Birkholz