Rheology of PP/Clay Hybrid Produced by Supercritical $CO_2$ Assisted Extrusion

  • Lee, Sang-Myung (Applied Rheology Center, Department of Chemical Engineering, Sogang University) ;
  • Shim, Dong-Cheol (Applied Rheology Center, Department of Chemical Engineering, Sogang University) ;
  • Lee, Jae-Wook (Applied Rheology Center, Department of Chemical Engineering, Sogang University)
  • Published : 2008.01.31

Abstract

Polypropylene (PP)-layered silicate nanocomposites were developed using a new processing method involving a supercritical carbon dioxide ($scCO_2$)-assisted co-rotating twin-screw extrusion process. The nanocomposites were prepared through two step extrusion processes. In the first step, the PP/clay mixture was extruded with $CO_2$ injected into the barrel of the extruder and the resulting foamed extrudate was cooled and pelletized. In the second step, the foamed extrudate was extruded with venting to produce the final PP/clay nanocomposites without $CO_2$. In this study, organophilic-clay and polypropylene matrix were used. Maleic anhydride grafted polypropylene (PP-g-MA) was used as a compatibilizer. This study focused on the effect of $scCO_2$ on the dispersion characteristics of the clays into a PP matrix and the rheological properties of the layered silicate based PP nanocomposites. The dispersion properties of clays in the nanocomposites as well as the rheological properties of the nanocomposites were examined as a function of the PP-g-MA concentration. The degree of dispersion of the clays in the nanocomposites was analyzed by X-ray diffraction and transmission electron microscope. Various rheological properties of the nanocomposites were measured using a rotational rheometer. In the experimental results, the $scCO_2$ assisted continuous manufacturing extrusion system was used to successfully produce the organophilic-clay filled PP nanocomposites. It was found that $scCO_2$ had a measurable effect on the clay dispersion in the polymer matrix and the melt intercalation of a polymer into clay layers.

Keywords

References

  1. E. P. Giannelis, Adv. Mater., 8, 29 (1996). https://doi.org/10.1002/adma.19960080104
  2. Y. Kojima, A. Usuki, M. Kawasumi, Y. Fukushima, A. Okada, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1179 (1993). https://doi.org/10.1557/JMR.1993.1179
  3. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  4. L. M. Liu, Z. N. Qi, and X. G. Zhu, J. Appl. Polym. Sci., 71, 1133 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1133::AID-APP11>3.0.CO;2-N
  5. S. H. Wu, F. Y. Wang, C. M. Ma, W. C. Chang, C. T. Kuo, H. C. Kuan, and W. J. Chen, Mater. Lett., 49, 327 (2001). https://doi.org/10.1016/S0167-577X(00)00394-3
  6. D. M. Lincoln, R. A. Vaia, Z. G. Wang, and B. S. Hsiao, Polymer, 42, 1621 (2001). https://doi.org/10.1016/S0032-3861(00)00414-6
  7. F. J. Medellin-Rodriguez, C. Burger, B. S. Hsiao, B. Chu, R. A. Vaia, and S. Phillips, Polymer, 42, 9015 (2001). https://doi.org/10.1016/S0032-3861(01)00395-0
  8. X. Liu and Q. Wu, Polymer, 43, 1933 (2002). https://doi.org/10.1016/S0032-3861(01)00759-5
  9. M. R. Kamal, N. K. Borse, and A. G. Rejon, Polym. Eng. Sci., 42, 1883 (2002). https://doi.org/10.1002/pen.11081
  10. P. U. Arocha, C. Mehler, J. E. Puskas, and V. Altstadt, Polymer, 44, 2441 (2003). https://doi.org/10.1016/S0032-3861(03)00115-0
  11. J. H. Park, W. N. Kim, H. S. Kye, S. S. Lee, M. Park, J. K. Kim, and S. H. Lim, Macromol. Res., 13, 367 (2005). https://doi.org/10.1007/BF03218468
  12. D. B. Zax, D. K. Yang, R. A. Santos, H. Hegmann, E. P. Giannelis, and E. Manias, J. Chem. Phys., 112, 2945 (2000). https://doi.org/10.1063/1.480867
  13. R. A. Vaia, H. Ishii, and E. P. Giannelis, Chem. Mater., 5, 1694 (1993). https://doi.org/10.1021/cm00036a004
  14. A. Alelah and M. Moet, J. Mater. Sci., 31, 3589 (1996). https://doi.org/10.1007/BF00360767
  15. M. Sikka, L. N. Cerini, S. S. Ghosh, and K. I. Winey, J. Polym. Sci.; Part B: Polym. Phys., 34, 1443 (1996). https://doi.org/10.1002/(SICI)1099-0488(199606)34:8<1443::AID-POLB7>3.0.CO;2-T
  16. M. Laus, M. Camerani, M. Lelli, K. Sparnacci, F. Sandrolini, and O. F. Francescangeli, J. Mater. Sci., 33, 2883 (1998). https://doi.org/10.1023/A:1017550206613
  17. N. Hasegawa, H. Okamoto, M. Kawasumi, and A. Usuki, J. Appl. Polym. Sci., 74, 3359 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3359::AID-APP9>3.0.CO;2-2
  18. M. W. Noh and D. C. Lee, Polym. Bull., 42, 619 (1999). https://doi.org/10.1007/s002890050510
  19. X. Fu and S. Qutubuddin, Polymer, 42, 807 (2001). https://doi.org/10.1016/S0032-3861(00)00385-2
  20. F. L. Beyer, N. C. B. Tan, A. Dasgupta, and M. E. Galvin, Chem. Mater., 14, 2983 (2002). https://doi.org/10.1021/cm011639k
  21. Y. C. Ke, C. Long, and Z. Qi, J. Appl. Polym. Sci., 71, 1139 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1139::AID-APP12>3.0.CO;2-E
  22. C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiraldi, J. R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong, J. Polym. Sci.; Part B: Polym. Phys., 40, 2661 (2002). https://doi.org/10.1002/polb.10331
  23. P. B. Messersmith and E. P. Giannelis, J. Polym. Sci.; Part A: Polym. Chem., 33, 1047 (1995). https://doi.org/10.1002/pola.1995.080330707
  24. G. Jimenez, N. Ogata, H. Kawai, and T. Ogihara, J. Appl. Polym. Sci., 64, 2211 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970613)64:11<2211::AID-APP17>3.0.CO;2-6
  25. R. Shima, L. A. Utracki, and A. Garcia-Rejon, Compos. Interfaces, 8, 345 (2002). https://doi.org/10.1163/156855401753255431
  26. T. M. Wu, J. C. Cheng, and M. C. Yan, Polymer, 44, 2553 (2003). https://doi.org/10.1016/S0032-3861(03)00106-X
  27. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719 (1994). https://doi.org/10.1021/cm00046a026
  28. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, Chem. Mater., 7, 2144 (1995). https://doi.org/10.1021/cm00059a023
  29. C. Zilg, R. Mulhaupt, and J. Finter, Macromol. Chem. Phys., 200, 661 (1999). https://doi.org/10.1002/(SICI)1521-3935(19990301)200:3<661::AID-MACP661>3.0.CO;2-4
  30. X. Kornmann, H. Lindberg, and L. A. Berhlund, Polymer, 42, 1303 (2001). https://doi.org/10.1016/S0032-3861(00)00346-3
  31. O. Becker, R. Varley, and G. Simon, Polymer, 43, 4365 (2002). https://doi.org/10.1016/S0032-3861(02)00269-0
  32. J. H. Park and C. H. Jana, Polymer, 44, 2091 (2003). https://doi.org/10.1016/S0032-3861(03)00075-2
  33. A. Usuki, M. Kato, A. Okata, and T. Kurauchi, J. Appl. Polym. Sci., 63, 137 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<137::AID-APP15>3.0.CO;2-2
  34. H. R. Fischer and L. H. Gielgens, Acta Polymerica, 50, 122 (1999) https://doi.org/10.1002/(SICI)1521-4044(19990401)50:4<122::AID-APOL122>3.0.CO;2-X
  35. J. U. Park, J. L. Kim, D. H. Kim, K, H, Ahn, and S. J. Lee, Macromol. Res., 14, 318 (2006). https://doi.org/10.1007/BF03219088
  36. J. F. Brennecke, Nature, 389, 333 (1997). https://doi.org/10.1038/38611
  37. G. Galgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001). https://doi.org/10.1021/ma000565f
  38. J. G. Ryu, J. W. Lee, and H. Kim, Macromol. Res., 10, 187 (2002). https://doi.org/10.1007/BF03218304
  39. J. Y. Kim, S. H. Kim, S. W. Kang, J. H. Chang, and S. H. Ahn, Macromol. Res., 14, 146 (2006). https://doi.org/10.1007/BF03218502