Browse > Article
http://dx.doi.org/10.12925/jkocs.2014.31.1.143

Fabrication of poly(ethylene oxide)/clay nanocomposites using supercritical fluid process  

Kim, Yong-Ryeol (Department of Chemical Engineering, Daejin University)
Jeong, Hyeon-Taek (Intelligent Polymer Research Institute, University of Wollongong)
Publication Information
Journal of the Korean Applied Science and Technology / v.31, no.1, 2014 , pp. 143-150 More about this Journal
Abstract
Recently, supercritical fluid process has been widely used in material synthesis and processing due to their remarkable properties such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive solvent owing to their characteristics including non-toxic, non-flammable, chemically inert, and also it has moderate critical temperature and critical pressure. In addition, supercritical carbon dioxide would dissolve many small organic molecules and most polymers. In this study, we have prepared the poly (ethylene oxide)/clay nanocomposites using supercritical fluid as a carbon dioxide. Commercialized Cloisites-15A and Cloisites-30B used in this study, which are modified with quaternary ammonium salts. The nanocomposites of polymer/clay were characterized by XRD, TGA and DSC. Poly (ethylene oxide)/clay nanocomposites by supercritical fluid show higher thermal stability than nanocomposites prepared by melt process. In addition, supercritical fluid process would be increased dispersibility of the nanoclay in the matrix.
Keywords
nanocomposite; supercritical process; poly(ethylene oxide); carbon dioxide; clay;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Li and H. Ishida, A Differential Scanning Calorimetry Study of the Assembly of Hexadecylamine Molecules in the Nanoscale Confined Space of Silicate Galleries, Chem. Mater., 14, 1398 (2002).   DOI   ScienceOn
2 X. Li, T. Kang, W.-J. Jo, J.-K. Lee, and C.-S. Ha, Preparation and Characterization of Poly(butyleneterephthalate)/Organoclay Nanocomposites, Macromol. Rapid. Commun., 22, 1306 (2001).   DOI   ScienceOn
3 Thomas, J. P. Intercalated Clay Catalysts, Science, 220, 4595 (1983).
4 G. Theng, Formation and properties of clay-polymer complexes, Elsevier B.V., (2012).
5 J. H. Park, W. N. Kim, H. S. Kye, S. S. Lee, M. Park, J. Kim and S. Lim, Disordering of clay layers in the nylon 6 / clay nanocomposites prepared by anionic polymerization, Macromolecular Res., 13(5), 367 (2005).   DOI
6 M. Wang and T. Pinavaia, Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin, J. Chem. Mater., 6, 468 (1994).   DOI   ScienceOn
7 P. B. Messermith and E. P. Giannelis, Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites, Chem. Mater., 6, 1719 (1994).   DOI   ScienceOn
8 Qian Zhao, Edward T. Samulski. Supercritical $CO_{2}$-Mediated Intercalation of PEO in Clay, Macromolecules, 36, 6967-6969, (2003).   DOI   ScienceOn
9 S.D. Burnside, P. Emmanuel and P. Giannelis, Synthesis and properties of new poly(dimethylsiloxane) nanocomposites, Chem. Mater., 7, 1597 (1995).   DOI
10 A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid, J. Appl. Polym. Sci., 55, 119 (1995).   DOI   ScienceOn
11 K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, Synthesis and properties of polyimide-clay hybrid, J. Polym. Sci.; Part A: Polym. Chem., 31, 2493 (1993).   DOI   ScienceOn
12 M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, Polyurethane adhesive nanocomposites as gas permeation barrier, Macromolecules, 36, 9851 (2003).   DOI   ScienceOn
13 T. J. Pinnavaia, Science, "Intercalated Clay Catalysts", 220, 365 (1983).   DOI   ScienceOn
14 P. B. Messersmith and E. P. Giannelis, Polymer-layered silicate nanocomposites: in situ intercalative polymerization of $\varepsilon$-caprolactone in layered silicates, Chem,. Mater., 5, 1064 (1993).   DOI   ScienceOn
15 E. P. Giannelis, Polymer Layered Silicate Nanocomposites, Adv. Mater., 8, 29 (1996).   DOI
16 J. W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites, Appl. Clay. Sci., 15, 31 (1999).   DOI   ScienceOn
17 T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, John Wiley & Sons Ltd., Chichester, England, (2001).
18 Y. Imai, S. Nishimura, E. Abe, H. Tateyama, A. Abiko, A. Yamaguchi, T. Aoyama, and H. Taguchi, High-Modulus Poly(ethylene terephthalate)/expandable fluorine mica nanocomposites with a novel reactive compatibilizer, Chem. Mater., 14, 477 (2002).   DOI   ScienceOn
19 G. Lagaly, Introduction: from clay mineral- polymer interactions to clay mineral-polymer nanocomposites, Appl. Clay. Sci., 15, 1 (1999).   DOI   ScienceOn
20 R. K. Bharadwaj, Modeling the barrier properties of polymer-layered silicate nanocomposites, Macromolecules, 34, 9189 (2001).   DOI   ScienceOn
21 T. Lan, P. D. Kaviratana, and T. Pinavaia, Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites, J. Chem. Mater., 7, 2144 (1995).   DOI   ScienceOn