DOI QR코드

DOI QR Code

Fabrication of poly(ethylene oxide)/clay nanocomposites using supercritical fluid process

초임계 공정을 이용한 폴리에틸렌옥사이드/클레이 나노복합체 제조

  • Kim, Yong-Ryeol (Department of Chemical Engineering, Daejin University) ;
  • Jeong, Hyeon-Taek (Intelligent Polymer Research Institute, University of Wollongong)
  • 김용렬 (대진대학교 화학공학과) ;
  • 정현택 (호주 울릉공 대학교, 지능형 고분자연구 센터)
  • Received : 2014.03.11
  • Accepted : 2014.04.02
  • Published : 2014.03.30

Abstract

Recently, supercritical fluid process has been widely used in material synthesis and processing due to their remarkable properties such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive solvent owing to their characteristics including non-toxic, non-flammable, chemically inert, and also it has moderate critical temperature and critical pressure. In addition, supercritical carbon dioxide would dissolve many small organic molecules and most polymers. In this study, we have prepared the poly (ethylene oxide)/clay nanocomposites using supercritical fluid as a carbon dioxide. Commercialized Cloisites-15A and Cloisites-30B used in this study, which are modified with quaternary ammonium salts. The nanocomposites of polymer/clay were characterized by XRD, TGA and DSC. Poly (ethylene oxide)/clay nanocomposites by supercritical fluid show higher thermal stability than nanocomposites prepared by melt process. In addition, supercritical fluid process would be increased dispersibility of the nanoclay in the matrix.

최근 낮은 표면장력, 높은 확산계수, 가스와 같은 낮은 점도, 그리고 액체와 유사한 밀도를 갖는 초임계 유체의 장점을 이용하여 여러 가지 물질의 합성이나 응용 공정에 초임계 유체를 이용하고 있다. 초임계 유체를 이용하여 복합체 제조 시 기존의 용융공정에 비해서 분자들의 움직임이 활발하게 이루어 질 수 있어서 물성의 향상을 기대할 수 있다. 또한 클레이가 고농도로 함유된 마스터 배치를 쉽게 제조할 수 있으며, 기존의 유기 용매를 사용하여 복합체를 제조할 때보다 잔존 용매를 쉽게 제거할 수 있다는 장점을 가지고 있다. 따라서 본 연구에서는 이러한 초임계 이산화탄소를 이용하여 폴리에틸렌옥사이드/클레이 나노복합체를 제조하였다. 또한 본 연구의 목적은 초임계 상태에서 분자들의 활발한 움직임을 기대할 수 있으므로 고분자가 용해되고 클레이 층상으로 효과적으로 삽입되어 복합체의 열적 특성 및 다른 여러 가지 물성을 증가시키는 데 있다. 복합체 제조 후 XRD, TGA, 그리고 DSC를 이용하여 복합체의 특성을 분석 했다. 그 결과 용융방법으로 제조한 복합체보다 열 안정성이 향상되었으며, 클레이 층상 거리도 더 많이 벌어짐을 확인할 수 있었다.

Keywords

References

  1. A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid, J. Appl. Polym. Sci., 55, 119 (1995). https://doi.org/10.1002/app.1995.070550113
  2. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, Synthesis and properties of polyimide-clay hybrid, J. Polym. Sci.; Part A: Polym. Chem., 31, 2493 (1993). https://doi.org/10.1002/pola.1993.080311009
  3. M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, Polyurethane adhesive nanocomposites as gas permeation barrier, Macromolecules, 36, 9851 (2003). https://doi.org/10.1021/ma035077x
  4. T. J. Pinnavaia, Science, "Intercalated Clay Catalysts", 220, 365 (1983). https://doi.org/10.1126/science.220.4595.365
  5. P. B. Messersmith and E. P. Giannelis, Polymer-layered silicate nanocomposites: in situ intercalative polymerization of $\varepsilon$-caprolactone in layered silicates, Chem,. Mater., 5, 1064 (1993). https://doi.org/10.1021/cm00032a005
  6. E. P. Giannelis, Polymer Layered Silicate Nanocomposites, Adv. Mater., 8, 29 (1996). https://doi.org/10.1002/adma.19960080104
  7. J. W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites, Appl. Clay. Sci., 15, 31 (1999). https://doi.org/10.1016/S0169-1317(99)00019-8
  8. T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, John Wiley & Sons Ltd., Chichester, England, (2001).
  9. Y. Imai, S. Nishimura, E. Abe, H. Tateyama, A. Abiko, A. Yamaguchi, T. Aoyama, and H. Taguchi, High-Modulus Poly(ethylene terephthalate)/expandable fluorine mica nanocomposites with a novel reactive compatibilizer, Chem. Mater., 14, 477 (2002). https://doi.org/10.1021/cm010408a
  10. G. Lagaly, Introduction: from clay mineral- polymer interactions to clay mineral-polymer nanocomposites, Appl. Clay. Sci., 15, 1 (1999). https://doi.org/10.1016/S0169-1317(99)00009-5
  11. R. K. Bharadwaj, Modeling the barrier properties of polymer-layered silicate nanocomposites, Macromolecules, 34, 9189 (2001). https://doi.org/10.1021/ma010780b
  12. Y. Li and H. Ishida, A Differential Scanning Calorimetry Study of the Assembly of Hexadecylamine Molecules in the Nanoscale Confined Space of Silicate Galleries, Chem. Mater., 14, 1398 (2002). https://doi.org/10.1021/cm0103747
  13. X. Li, T. Kang, W.-J. Jo, J.-K. Lee, and C.-S. Ha, Preparation and Characterization of Poly(butyleneterephthalate)/Organoclay Nanocomposites, Macromol. Rapid. Commun., 22, 1306 (2001). https://doi.org/10.1002/1521-3927(20011101)22:16<1306::AID-MARC1306>3.0.CO;2-I
  14. Thomas, J. P. Intercalated Clay Catalysts, Science, 220, 4595 (1983).
  15. G. Theng, Formation and properties of clay-polymer complexes, Elsevier B.V., (2012).
  16. J. H. Park, W. N. Kim, H. S. Kye, S. S. Lee, M. Park, J. Kim and S. Lim, Disordering of clay layers in the nylon 6 / clay nanocomposites prepared by anionic polymerization, Macromolecular Res., 13(5), 367 (2005). https://doi.org/10.1007/BF03218468
  17. M. Wang and T. Pinavaia, Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin, J. Chem. Mater., 6, 468 (1994). https://doi.org/10.1021/cm00040a022
  18. P. B. Messermith and E. P. Giannelis, Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites, Chem. Mater., 6, 1719 (1994). https://doi.org/10.1021/cm00046a026
  19. Qian Zhao, Edward T. Samulski. Supercritical $CO_{2}$-Mediated Intercalation of PEO in Clay, Macromolecules, 36, 6967-6969, (2003). https://doi.org/10.1021/ma0349682
  20. T. Lan, P. D. Kaviratana, and T. Pinavaia, Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites, J. Chem. Mater., 7, 2144 (1995). https://doi.org/10.1021/cm00059a023
  21. S.D. Burnside, P. Emmanuel and P. Giannelis, Synthesis and properties of new poly(dimethylsiloxane) nanocomposites, Chem. Mater., 7, 1597 (1995). https://doi.org/10.1021/cm00057a001