• Title/Summary/Keyword: medium composition.

Search Result 991, Processing Time 0.027 seconds

Several Factors Affecting on In vitro Culture of Prothallus and Ex Vitro Sporophyte Formation from Prothallus of Dyropteris varia (L.) O. Kuntze (족제비고사리 전엽체의 기내배양 및 기외 포자체 형성에 미치는 제요인)

  • Jeong Jin-A;Lee Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.19 no.2
    • /
    • pp.252-258
    • /
    • 2006
  • The most effective conditions of In vitro culture and ex vitro sporophyte formation from prothallus were studied for mass propagation of Dyropteris varia. The most effective medium of prothallus proliferation was Murashige and Skoog's basal medium supplemented with 10:50mM of $NH_4^+:NO_3^-$ and 2% sucrose. The optimum pH level was 5.8 and prothallus growth was promoted on medium containing $0.6{\sim}0.8%$ agar. Almost of the tested growth regulators (NAA, IAA, 2,4-D, BAP, kinetin and 2ip) were inhibitory in prothallus proliferation as the concentration of growth regulators became higher. The highest number of sporophytes was obtained by transplanting prothallus on compost only than on any other soil compositions. Sporophyte formation was promoted remarkably by soaking prothallus with $100{\mu}M\;GA_3$ for 3 hours.

Evaluation of Different Culture Conditions of Clostridium bifermentans DPH-1 for Cost Effective PCE Degradation

  • Humayra Afroze Syeda;Hasegawa Yuki;Nomura Izumi;Chang Young C.;Sato Takeshi;Takamizawa Kazuhiro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2005
  • Clostridium bifermentans strain DPH-1 has already been found to dechlorinate perchloroethylene (PCE) to cis-dichloroethylene (cis-DCE) via trichloroethylene (TCE). In this study, our investigation on different culture conditions of this DPH-1 strain was extended to find a more efficient and cost effective growth medium composition for this DPH-1 strain in bioremediation practices. Temperature dependency of strain DPH-1 showed that the growth starting time and PCE degradation at $15^{\circ}C$ was very slow compared to that of $30^{\circ}C$, but complete PCE degradation occurred in both cases. For the proper utilization of strain DPH-1 in more cost effective bioremediation practices, a simpler composition of an effective media was studied. One component of the culture medium, yeast extract, had been substituted by molasses, which served as a good source of electron donor. The DPH-1 strain in the medium containing molasses, in the presence of $K_{2}HPO_4\;and\;KH_{2}PO_4$, showed identical bacterial multiplication (0.135 mg protein $mL^{-1}h^{-1}$) and PCE degradation rates ($0.38\;{\mu}M/h$) to those of the yeast extract containing medium.

Optimization of Medium Composition for Lipopeptide Production from Bacillus subtilis N7 using Response Surface Methodology

  • Luo, Yi;Zhang, Guoyi;Zhu, Zhen;Wang, Xiaohui;Ran, Wei;Shen, Qirong
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.52-59
    • /
    • 2013
  • The nutritional requirements for the maximum production of lipopeptides by Bacillus subtilis N7 (B. subtilis N7) were investigated and optimized using response surface methodology (RSM) under shake flask fermentation. A one-factor-at-a-time experimental setup was used to screen carbon and nitrogen sources. A Plackett-Burman design (PBD) was employed to screen the most critical variables for lipopeptides production amongst ten nutritional elements. The central composite experimental design (CCD) was finally adopted to elucidate the composition of the fermentation medium. Statistical analyses (analysis of variance, ANOVA) of the results showed that KCl, $MnSO_4$ and $FeSO_4{\cdot}6H_2O$ were important components and that their interactions were strong. Lipopeptide production was predicted to reach 709.87 mg/L after a 60 h incubation using an optimum fermentation medium composed of glucose 7.5 g/L, peanut oil 1.25 g/L, $MgSO_4$ 0.37 g/L, $KH_2PO_4$ 0.75 g/L, monosodium glutamate 6.75 g/L, yeast extract and $NH_4Cl$ (5:3 w/w) 10 g/L, KCl 0.16 g/L, $FeSO_4{\cdot}6H_2O$ 0.24 mg/L, $MnSO_4$ 0.76 mg/L, and an initial pH of 7.0. Lipopeptide production ($706.57{\pm}3.70$ mg/L) in the optimized medium confirmed the validity of the predicted model.

Optimal Medium Composition Suitable for Enhancement of Biofertilizer's Shelf Life

  • Lee, Yong-Seong;Park, Yun-Suk;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.456-460
    • /
    • 2016
  • Biofertilizers are increasingly available in the market as one of the alternatives to chemical fertilizers. The supply of a high number of viable microorganisms is important for farmers. Lysobacter capsici YS1215 producing chitinases and gelatinases, isolated from soil in Korea, was evaluated for the establishment of an optimal medium condition of its shelf life under an in vitro condition. In this study, the population density of a biofertilizer (L. capsici YS1215) in media containing crab shell and gelatin powder (M1, M2, M3 and M4) was observed to be higher than that of populations grown in TSB (Tryptic soy broth) media (M5, M6 and M7) during experimental period. In addition, the population density at 11 months was over $10^6\;CFU\;mL^{-1}$ in M1, M3 and M4, but under $10^6\;CFU\;mL^{-1}$ in M2, M5, M6 and M7. The best optimal medium for the shelf life was M1 ($2.6{\times}10^6\;CFU\;mL^{-1}$) containing both chitinous and gelatinous materials at 11 months. Therefore, this study provided results of the appropriate medium composition for the enhancement of the shelf life of L. capsici YS1215.

Effect of Medium Composition on in Vitro Shoot Regeneration from Leaves of Cassava (Manihot esculenta Crantz) Through Somatic Embryogenesis and Callus Induction (카사바 잎 절편 유래 체세포배 배양시 배지조성이 기내 식물체 재분화에 미치는 영향)

  • Young Hee Kwon;Joung Kwan Lee;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.19-19
    • /
    • 2020
  • The Cassava(Manihot esculenta Crantz) is a tropical root crop, originally from Amazonia, that provides the staple food of an estimated 800 million people worldwide. It belongs to the family Euphorbiaceae which also includes rubber (Hevea brasiliensis) and castor bean (Ricinus communis). Among tropical crops, rice, sugarcane, maize and cassava are the most important sources of calories for human consumption. Problems in the propagation of cassava are virus diseases and low rates of seed germination. So we tried to optimize protocols for mass production of somatic embryo amenable to large-scale vegetative propagation of Cassava. After in vitro eight-week culture of leaves of Cassava, the medium which contained the 2,4-D, BAP and IBA showed the highest callus induction rate, embryogenesis callus formation rate and somatic embryo formation in Cassava culture. In the medium with GA3 and myo-inositol, shoots were most vigorously regenerated from somatic embryos of Cassava. Our experiments confirmed that in vitro growth and multiplication of plantlets could depend on its reaction to the different medium composition, and this micropropagation techniques could be a useful system for healthy and vigorous plant production.

  • PDF

Development of Media for the Cultivation of Enterobacter amnigenus GG0461 and its Nitrate Uptake (Enterobacter amnigenus GG0461 균주의 생산을 위한 배지개발 및 질산이온 흡수)

  • Park, Seong-Wan;Yoon, Young-Bae;Wang, Hee-Sung;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.252-257
    • /
    • 2011
  • To remove excess nitrate from the agricultural environments, Enterobacter amnigenus GG0461 has been isolated as a bacterial strain having high capability of nitrate uptake activity. This strain was able to remove nitrate more than 3,000 ppm (50 mM) in the Pseudomonas agar F (PAF) medium. Therefore, it could be a candidate strain for a nitrate scavenger in the various contaminated environments, such as agricultural soils, livestock sewage, and industrial wastewater. In order to develop medium for the large-scale production of the strain GG0461, each component of PAF medium was replaced with the corresponding commercial product and the optimal conditions for bacterial growth and nitrate uptake activity were measured. Glycerol was replaced with the commercially available product and the nitrogen source was substituted with commercial tryptone, yeast extract, soybean meal, and fermented fish extract. Bacterial growth and nitrate uptake activity were maximal in the media containing 2% tryptone, followed by yeast extract, soybean meal, and fermented fish extract. The pH of the growth medium containing 2% tryptone was decreased by the bacterial nitrate uptake, suggesting that the nitrate uptake is mediated by a nitrate/proton antiporter. This result shows that the medium containing commercial tryptone was good enough for the physiological activity of the strain GG0461. Each component of PAF medium was successfully replaced with the corresponding commercial product except peptone. In conclusion, the composition of medium for the cultivation of the strain GG0461 was determined as 2% tryptone, 1% glycerol, plus required salts according to the composition of PAF medium.

Growth, Flowering, and Nutrient Composition of Salvia Grown in Peat moss Media Containing Pellets Processed with Poultry Feather Fibers at Different Mixing Ratios

  • Yoo, Yong Kwon;Kim, In Kyung;Roh, Mark S.;Roh, Yong Seung;Huda, Masud
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.289-299
    • /
    • 2017
  • The objective of this study was to determine the effect of replacing perlite (PL) with pellets processed with poultry feather fiber as an inert material to prepare growing medium. The growth and flowering of Salvia splendens 'Vista Red' grown in individual growing medium $Biosangto^{(R)}$, peat moss (PM), PL, and two pellets (P45-1 and P45-2) were evaluated. Peat moss was mixed with PL, P45-1, or P45-2 at various ratios (1:0 to 1:3 or 3:1 by volume) to investigate the feasibility of replacing PL with pellets. Nutrient composition of the growing medium and leaf tissues was analyzed. The number of florets, inflorescence length, plant height, and fresh weight of plants grown in media containing P45-1 or P45-2 were reduced compared to those grown in individual growing medium PM or PL. As the mixing ratio of P45-1 or P45-2 to PM was higher, the growth of salvia, such as inflorescence length, plant height, number of leaves, and fresh weight was inhibited. Our results indicate that mixing three parts PM with one part of P45-1 (PM/P45-1/3:1) or P45-2 (PM/P45-2/3:1) accelerated flowering and increased the number of florets and leaves compared to other mixing ratios of PM and pellets media. The concentrations of phosphorus (P), calcium (Ca), boron (B), iron (Fe), and copper (Cu) in individual growing medium PL, P45-1, and P45-2 were significantly lower than those in PM. The concentration of N was the highest in leaves of plants grown in P45-1 or P45-2 amended media, and the concentrations of P, Ca, and zinc (Zn) in leaves were lower in individual growing medium P45-1 or P45-2 than in PM and PL. The pH of PM/P45-1/3:1 or PM/P45-2/3:1 media was maintained at optimal level (5.8-5.9) and the concentrations of macro- and micro-elements in the media and leaves were considered to be optimal levels. Therefore, mixing three parts PM with one part P45-1(PM:P45-1/3:1) or P45-2 (PM:P45-2/3:1) is recommended for improved growth and flowering in salvia. This suggests that P45-1 or P45-2 can replace PL as an inert material to prepare growing medium.

Growth and Nutritional Composition of Eustigmatophyceae Monodus subterraneus and Nannochloropsis oceanica in Autotrophic and Mixotrophic Culture

  • Jo, Min Jin;Hur, Sung Bum
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • Eicosapentaenoic acid (EPA) produced from marine organisms is widely used in nutraceuticals. Monodus subterraneus and Nannochloropsis oceanica, which are representative freshwater and marine Eustigmatophyceae, respectively, are known to have a high content of protein and lipid, particularly, EPA. In this study, to compare the growth and nutritional composition of M. subterraneus and N. oceanica, they were cultured in autotrophic and mixotrophic conditions with JM and f/2 medium, respectively, at $25^{\circ}C$. In addition, $80{\mu}mol\;photons\;m^{-2}s^{-1}$ with 24-hour and 12-hour light was provided, with the addition of 2% glucose to the medium for the mixotrophic culture. With regard to growth, M. subterraneus showed 10 times higher biomass in a mixotrophic culture than in an autotrophic one. However, no significant difference was observed for N. oceanica between the two culture methods. With respect to nutritional composition, M. subterraneus cultured autotrophically had a higher protein and lipid content, particularly EPA, than that cultured mixotrophically, but no significant difference was found in the two cultures of N. oceanica. Furthermore, M. subterraneus cultured autotrophically with continuous light showed higher nutritional composition, particularly EPA, than N. oceanica. In conclusion, the mass culture of freshwater M. subterraneus is much easier and more economical than marine N. oceanica. In addition, production of EPA will be economically improved if mixotrophic culturing of M. subterraneus is first conducted to maximize the biomass, and then secondary autotrophic culturing is performed.

High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor

  • Vu, Van Hanh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1603-1611
    • /
    • 2009
  • High-cell-density cultivation of yeast was investigated using the agricultural waste products corn steep liquor (CSL) and molasses. The Saccharomyces cerevisiae KV-25 cell mass was significantly dependent on the ratio between C and N sources. The concentrations of molasses and CSL in the culture medium were statistically optimized at 10.25% (v/v) and 16.87% (v/v), respectively, by response surface methodology (RSM). Batch culture in a 5-l stirred tank reactor using the optimized medium resulted in a cell mass production of 36.5 g/l. In the fed-batch culture, the feed phase was preceded by a batch phase using the optimized medium, and a very high dried-cell-mass yield of 187.63 g/l was successfully attained by feeding a mixture of 20% (v/v) molasses and 80% (v/v) CSL at a rate of 22 ml/h. In this system, the production of cell mass depended mainly on the agitation speed, the composition of the feed medium, and the glucose level in the medium, but only slightly on the aeration rate.

Enhanced Production of Chlorella ovalis and Dunaliella parva by the Rates of Medium Composition Obtained from the Fermented Animal Wastewater Including a Natural Substitute Chelator for EDTA (EDTA 대체용 천연 킬레이팅제를 함유한 발효 축산폐수의 배지조성률에 따른Chlorella ovalis와 Dunaliella parva의 생산성 강화)

  • Jeon, Seon-Mi;Jeune, Kyung-Hee;Kim, Mi-Kyung
    • ALGAE
    • /
    • v.21 no.3
    • /
    • pp.333-341
    • /
    • 2006
  • The productivities of Chlorella ovalis and Dunaliella parva were influenced by the rates of medium compositions obtained from the fermented animal wastewater (BM: bacteria mineral water) including a natural substitute chelator for EDTA (etylenediaminetetraacetic acid). The most favorable medium was -E+50 adding 50% BM in f/2 medium instead of EDTA, a chemical chelator, which increased more 19-fold of cell density in C. ovalis and 7-fold in D. parva than cells cultured on f/2 medium as well as the enhancements of chlorophyll a (f/2-E: 0.26 g L–1, -E+50: 1.5 g L–1 in C. ovalis; f/2-E: 2.7 g L–1, -E+50: 15 g L–1 in D. parva) and the increase of maximal PSII quantum yields. These results were verified that the BM could play an important part as a natural chelator substituted for EDTA. In the fields of biotechnology, food organisms in fishery and eco-industries of CO2 sequestration in air and nutrient removal in water, the natural chelator of BM could be applied to enhance the biomass of the other microalgae.