Evaluation of Different Culture Conditions of Clostridium bifermentans DPH-1 for Cost Effective PCE Degradation |
Humayra Afroze Syeda
(United Graduate School of Agricultural Science, Gifu University)
Hasegawa Yuki (Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University) Nomura Izumi (Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University) Chang Young C. (United Graduate School of Agricultural Science, Gifu University) Sato Takeshi (Department of Civil Engineering, Gifu University) Takamizawa Kazuhiro (United Graduate School of Agricultural Science, Gifu University, Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University) |
1 | Infante, P. F. and T. A. Tsongas (1982) Mutagenic and oncogenic effects of chloromethanes, chloroethanes, and halogenated analogs of vinyl chloride. Environ. Sci. Res. 25: 301-327 |
2 | Okeke, B. C., A. Paterson, J. E. Smith, and I. A. Watson- Craik (1997) Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Appl. Microbiol. Biotechnol. 48: 563-569 DOI ScienceOn |
3 | Neumann, A., H. Scholz-Muramatsu, and G. Diekert (1994) Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch. Microbiol. 162: 295-301 DOI ScienceOn |
4 | Miller, E., G. Wohlfarth, and G. Diekert (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. Strain PCE-S. Arch. Microbiol. 168: 513-519 DOI ScienceOn |
5 | Schumacher, W. and C. Holliger (1996) The proton electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in Dehalobacter restrictus. J. Bacteriol. 178: 2328-2333 DOI |
6 | Magnuson, J. K., R. V. Stern, J. M. Gossett, S. H. Zinder, and D. R. Burris (1998) Reductive dechlorination of tetrachloroethene to ethene by a two component enzyme pathway. Appl. Environ. Microbiol. 64: 1270-1275 |
7 | Miller, E., G. Wohlfarth, and G. Diekert (1998) Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch. Microbiol. 169: 497-502 DOI ScienceOn |
8 | Suayama, A. M., S. Yamashita, S. Yoshino, and K. Furukawa (2002) Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J. Bacteriol. 184: 3419-3425 DOI ScienceOn |
9 | Okeke, B. C., Y. C. Chang, M. Hatsu, T. Suzuki, and K. Takamizawa (2001) Purification and cloning, and sequencing of an enzyme mediating the reductive dechlorination of tetrachloroethylene (PCE) from Clostridium bifermentans DPH-1. Can. J. Microbiol. 47: 448-456 DOI ScienceOn |
10 | Pietari, J. M. H. (1999) Development and Characterization of a Psychotropic Dechlorinating Culture and Temperature Response of a Mesophilic Dechlorinating Culture. M.S. Thesis. University of Washington, WA, USA |
11 | Fetzner, S. (1998) Bacterial dehalogenation. Appl. Micobiol. Biotechnol. 50: 633-657 DOI PUBMED ScienceOn |
12 | Distefano, T. D. (1999) The effect of tetrachloroethylene on biological dechlorination of vinyl chloride: Potential implication for natural bioattenuation. Water Res. 33: 1688-1694 DOI ScienceOn |
13 | Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000) Degradation of a variety of halogenated aliphatic compounds by an anaerobic mixed culture. J. Ferment. Bioeng. 86: 410-412 DOI ScienceOn |
14 | Holliger, C., G. Schraa, A. J. M., Stams, and A. J. B. Zehnder (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl. Environ. Microbiol. 59: 2991-2997 |
15 | Ni, S., J. K. Fredrickson, and L. Xun (1995) Purification and characterization of a novel 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of Desulfomonile tiedjei DCB-1. J. Bacteriol. 177: 5135-5139 DOI |
16 | U.S. Environmental Protection Agency (1985) Substances Found at Proposed and Final NPL Sites Through Update Number Three. Document NPL-U3-6-3. US Environmental Protection Agency, Washington, D.C., USA |
17 | Maymo-Gatell, X., Y. Chien, J. M. Gossett, and S. H. Zinder (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276: 1568-1571 DOI PUBMED ScienceOn |
18 | Bradley, P. M., F. H. Chapelle, and D. R. Lovley (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 64: 3102-3105 |
19 | Vanneli, T., M. Logan, D. M. Arciero, and A. B. Hooper (1990) Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 60: 542-548 |
20 | Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 DOI PUBMED ScienceOn |
21 | Harkness, M. R. (2000) Economic considerations in enhanced aerobic biodegradation. pp. 9-14. In: G. B. Wickramananyake, A. R. Gavaskar, B. C. Alleman, and V. S. Magar (eds.). Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA |
22 | Silva, H. J., A. M. Giulietti, R. F. Segovia, and R. J. Ertola (1982) Use of molasses and whey in culture media for the development and production of a toxin from Clostridium perfringens type D. Rev. Argent. Microbiol. 14: 85-90 |
23 | Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J. Biosci. Bioeng. 89: 489-491 DOI ScienceOn |
24 | Ensley, B. D. (1991) Biochemical diversity of trichloroethylene metabolism. Annu. Rev. Microbiol. 45: 283-299 DOI PUBMED ScienceOn |
25 | Malachowsky, K. J., T. J. Phelps, A. B. Teboli, D. E. Minnikin, and D. C. White (1994) Aerobic mineralization of trichloroethylene, vinyl chloride and aromatic compounds by Rhodococcus species. Appl. Environ. Microbiol. 60: 542-548 PUBMED |
26 | Gossett, J. M. (1987) Measurement of Henry's law constants for C1 and C2 chlorinated hydrocarbons. Environ. Sci. Technol. 21: 202-208 DOI ScienceOn |
27 | de Bruin, W. P., M. J. J. Kotterman, M. A., Posthumus, G., Schraa, and A. J. B. Zehnder (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl. Environ. Microbiol. 58: 1996-2000 |
28 | Neumann, A., G. Wohlfarth, and G. Diekert (1995) Properties of tetrachloroethene dehalogenase of Dehalospirillum multivorans. Arch. Microbiol. 163: 276-281 DOI ScienceOn |
29 | Ellis, D. E., E. J. Lutz, R .J. Odom, Jr. Buchanan, M. D. Lee, C. L. Bartlett, M. R. Harkness, and K. A. Deweered (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ. Sci. Technol. 34: 2254-2260 DOI ScienceOn |
30 | Maymo-Gatell, X., V. Tandoi, J. M. Gossett, and S. H. Zinder (1995) Characterization of an -utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethane in the absence of methanogenesis and acetogenesis. Appl. Environ. Microbiol. 61: 3928-3933 |
31 | Sung, Y., K. M. Ritalahti, R. A. Sanford, J. W. Urbance, S. J. Flynn, J. M. Tiedje, and F. E. Loffler (2003) Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. Appl. Environ. Microbiol. 69: 2964- 2974 DOI ScienceOn |
32 | Harkness, M. R., A. A. Bracco, M. J. Jr. Brennan, K. A. DeWeerd, and J. L. Spivack, (1999) Use of Bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns. Environ. Sci. Technol. 33: 1100-1109 DOI ScienceOn |
33 | Fathepure, B. Z., J. P. Nengu, and S. A. Boyd (1987) Anaerobic bacteria that dechlorinate perchloroethylene. Appl. Environ Microbiol. 53: 2671-2674 |