DOI QR코드

DOI QR Code

High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor

  • Vu, Van Hanh (Department of Bioscience and Biotechnology, The University of Suwon) ;
  • Kim, Keun (Department of Bioscience and Biotechnology, The University of Suwon)
  • Published : 2009.12.31

Abstract

High-cell-density cultivation of yeast was investigated using the agricultural waste products corn steep liquor (CSL) and molasses. The Saccharomyces cerevisiae KV-25 cell mass was significantly dependent on the ratio between C and N sources. The concentrations of molasses and CSL in the culture medium were statistically optimized at 10.25% (v/v) and 16.87% (v/v), respectively, by response surface methodology (RSM). Batch culture in a 5-l stirred tank reactor using the optimized medium resulted in a cell mass production of 36.5 g/l. In the fed-batch culture, the feed phase was preceded by a batch phase using the optimized medium, and a very high dried-cell-mass yield of 187.63 g/l was successfully attained by feeding a mixture of 20% (v/v) molasses and 80% (v/v) CSL at a rate of 22 ml/h. In this system, the production of cell mass depended mainly on the agitation speed, the composition of the feed medium, and the glucose level in the medium, but only slightly on the aeration rate.

Keywords

References

  1. Abrahao-Neto, J., P. Infanti, and M. Vitolo. 1996. Hexokinase production from S. cerevisiae: Culture conditions. Appl. Biochem. Biotechnol. 57/58: 407-412 https://doi.org/10.1007/BF02941720
  2. Abrahao-Neto, J., P. Infanti, and M. Vitolo. 1997. Influence of pH, temperature and dissolved oxygen concentration on the production of glucose-6-phosphate dehydrogenase and invertase by S. cerevisiae. Braz. J. Chem. Eng. 14: 89-94
  3. Calado, C. R. C., C. Almeida, J. M. S. Cabral, and L. P. Fonseca. 2003. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. J. Biosci. Bioeng. 96: 141-148 https://doi.org/10.1016/S1389-1723(03)90116-2
  4. Crueger, W. and A. Crueger. 2000. Substrates for industrial fermentation, pp. 59-62. In W. Crueger and A. Crueger (eds.). Biotechnology, A Textbook of Industrial Microbiology. Panima Publishing Corporation, New Delhi
  5. Fiechter, A. and W. Seghezzi. 1992. Regulation of glucose metabolism in growing yeast cells. J. Biotechnol. 29: 27-45 https://doi.org/10.1016/0168-1656(92)90028-8
  6. Hoek, P. V., E. D. Hulster, J. P. V. Dijken, and J. T. Pronk. 2000. Fermentative capacity in high-cell-density fed-batch cultures of Baker's yeast. Biotechnol. Bioeng. 68: 517-522 https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<517::AID-BIT5>3.0.CO;2-O
  7. Kapat, A., J. K. Jung, and Y. H. Park. 1997. Enhancement of extracellular glucose oxidase production in pH-stat feed-back controlled fed-batch culture of recombinant Saccharomyces cerevisiae. Biotechnol. Lett. 20: 683-686 https://doi.org/10.1023/A:1005374608270
  8. Kharel, M. K., H. C. Lee, J. K. Sohng, and K. Liou. 2002. Statistical optimization of medium components for the improved production of cystocin by Streptomyces sp. GCA0001. J. Ind. Eng. Chem. 8: 427-431
  9. Kim, S. J., G. J. Kim, D. H. Park, and Y. W. Ryu. 2003. Highlevel production of astaxanthin by fed-batch culture of mutant strain Phaffia rhodozyma AJ-6-1. J. Microbiol. Biotechnol. 13: 175-181
  10. Kim, Y. H., S. W. Kang, J. H. Lee, H. I. Chang, C. W. Yun, H. D. Paik, C. W. Kang, and S. W. Kim. 2007. High cell density fermentation of Saccharomyces cerevisiae JUL3 in fed-batch culture for the production of $\beta$-glucan. J. Ind. Eng. Chem. 13: 153-158
  11. Lewis, S. M. 1996. Fermentation ethanol, pp. 39. In T. Godfrey and S. West, (eds.). Industrial Enzymology. MacMillan Press, London
  12. Li, Y. H., Z. K. Zhao, and F. Bai. 2007. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enz. Microb. Technol. 41: 312-317 https://doi.org/10.1016/j.enzmictec.2007.02.008
  13. Liggett, W. R. and H. Koffler. 1948. Corn steep liquor in microbiology. Bacteriol. Rev. 12: 297-311
  14. Lim, J. S., M. C. Park, J. H. Lee, S. W. Park, and S. W. Kim. 2005. Optimization of culture medium and conditions for neofructooligosaccharides production by Penicillium citrinum. Eur. Food Res. Technol. 221: 639-644 https://doi.org/10.1007/s00217-005-0070-6
  15. Liu, Y. P., P. Zheng, Z. H. Sun, Y. Ni, J. J. Dong, and L. L. Zhu. 2008. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour. Technol. 99: 1736-1742 https://doi.org/10.1016/j.biortech.2007.03.044
  16. Meesters, P. A. E. P., G. N. M. Huijberts, and G. Eggink. 1996. High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl. Microbiol. Biotechnol. 45: 575-579 https://doi.org/10.1007/s002530050731
  17. Mendoza-Vega, O., J. Sabatie, and S. W. Brown. 1994. Industrial production of heterologous proteins by fed-batch cultures of the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 15: 369-410 https://doi.org/10.1111/j.1574-6976.1994.tb00146.x
  18. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 3: 426-428 https://doi.org/10.1021/ac60147a030
  19. Najafpour, G. D. and C. P. Shan. 2003. Enzymatic hydrolysis of molasses. Bioresour. Technol. 86: 91-94 https://doi.org/10.1016/S0960-8524(02)00103-7
  20. Pan, J. G., M. Y. Kwak, and J. S. Rhee. 1986. High density cell culture of Rhodotorula glutinis using oxygen-enriched air. Biotechnol. Lett. 8: 715-718 https://doi.org/10.1007/BF01032568
  21. Shang, F., S. Wen, X. Wang, and T. Tan. 2006. High-celldensity fermentation for ergosterol production by Saccharomyces cerevisiae. J. Biosci. Bioeng. 101: 38-41 https://doi.org/10.1263/jbb.101.38
  22. Sonnleitner, B. and O. Kappeli. 1986. Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis. Biotechnol. Bioeng. 28: 927-937 https://doi.org/10.1002/bit.260280620
  23. Vohra, A. and T. Satyanarayana. 2004. A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. J. Appl. Microbiol. 97: 471-476 https://doi.org/10.1111/j.1365-2672.2004.02327.x
  24. Vu, V. H. and K. Kim. 2009. Ethanol production from rice winery waste - rice wine cake by simultaneous saccharification and fermentation without cooking. J. Microbiol. Biotechnol. 19: 1161-1168 https://doi.org/10.4014/jmb.0907.07001
  25. Wen, S., T. Zhang, and T. Tan. 2006. Maximizing production of glutathione by amino acid modulation and high-cell-density fedbatch culture of Saccharomyces cerevisiae. Process Biochem. 41: 2424-2428 https://doi.org/10.1016/j.procbio.2006.06.030
  26. White, J. 1954. Yeast Technology. Chapman & Hall, Ltd., London
  27. White, P. and L. A. Johnson. 2003. Corn, Chemistry and Technology, 2nd Ed. American Association of Cereal Chemists, St. Paul, MN
  28. Yamauchi, H., H. Mori, T. Kobayashi, and S. Shimizu. 1983. Mass production of lipids by Lipomyces starkeyi in microcomputeraided fed-batch culture. J. Ferment. Technol. 61: 275-280

Cited by

  1. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media vol.91, pp.6, 2009, https://doi.org/10.1007/s00253-011-3315-2
  2. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose vol.12, pp.None, 2009, https://doi.org/10.1186/1475-2859-12-66
  3. Bio-Based Production of Dimethyl Itaconate From Rice Wine Waste-Derived Itaconic Acid vol.12, pp.11, 2009, https://doi.org/10.1002/biot.201700114
  4. High cell density culture of baker's yeast FX‐2 based on pH‐stat coupling with respiratory quotient vol.66, pp.3, 2009, https://doi.org/10.1002/bab.1735
  5. Designation of rice cake starters for fermented rice products with desired characteristics and fast fermentation vol.56, pp.6, 2009, https://doi.org/10.1007/s13197-019-03784-9
  6. High Cell Density Cultivation of Saccharomyces cerevisiae with Intensive Multiple Sequential Batches Together with a Novel Technique of Fed-Batch at Cell Level (FBC) vol.8, pp.10, 2009, https://doi.org/10.3390/pr8101321
  7. A New Approach for the Production of Selenium-Enriched and Probiotic Yeast Biomass from Agro-Industrial by-Products in a Stirred-Tank Bioreactor vol.10, pp.12, 2009, https://doi.org/10.3390/metabo10120508
  8. Sustainable Agronomic Valorization of Unsulfured Molasses and Defatted Soybean Meal as an Optimized Formulation of Bio-Organic Fertilizer Enriched with High Cell Density P-Solubilizing Bacteria vol.11, pp.5, 2009, https://doi.org/10.3390/agronomy11050996