Browse > Article
http://dx.doi.org/10.4014/jmb.0907.07027

High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor  

Vu, Van Hanh (Department of Bioscience and Biotechnology, The University of Suwon)
Kim, Keun (Department of Bioscience and Biotechnology, The University of Suwon)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.12, 2009 , pp. 1603-1611 More about this Journal
Abstract
High-cell-density cultivation of yeast was investigated using the agricultural waste products corn steep liquor (CSL) and molasses. The Saccharomyces cerevisiae KV-25 cell mass was significantly dependent on the ratio between C and N sources. The concentrations of molasses and CSL in the culture medium were statistically optimized at 10.25% (v/v) and 16.87% (v/v), respectively, by response surface methodology (RSM). Batch culture in a 5-l stirred tank reactor using the optimized medium resulted in a cell mass production of 36.5 g/l. In the fed-batch culture, the feed phase was preceded by a batch phase using the optimized medium, and a very high dried-cell-mass yield of 187.63 g/l was successfully attained by feeding a mixture of 20% (v/v) molasses and 80% (v/v) CSL at a rate of 22 ml/h. In this system, the production of cell mass depended mainly on the agitation speed, the composition of the feed medium, and the glucose level in the medium, but only slightly on the aeration rate.
Keywords
High-cell-density culture; Saccharomyces cerevisiae; molasses; corn steep liquor; fed batch; response surface methodology;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Calado, C. R. C., C. Almeida, J. M. S. Cabral, and L. P. Fonseca. 2003. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. J. Biosci. Bioeng. 96: 141-148   DOI   PUBMED   ScienceOn
2 Meesters, P. A. E. P., G. N. M. Huijberts, and G. Eggink. 1996. High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl. Microbiol. Biotechnol. 45: 575-579   DOI   ScienceOn
3 Najafpour, G. D. and C. P. Shan. 2003. Enzymatic hydrolysis of molasses. Bioresour. Technol. 86: 91-94   DOI   ScienceOn
4 Vohra, A. and T. Satyanarayana. 2004. A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. J. Appl. Microbiol. 97: 471-476   DOI   ScienceOn
5 Lewis, S. M. 1996. Fermentation ethanol, pp. 39. In T. Godfrey and S. West, (eds.). Industrial Enzymology. MacMillan Press, London
6 Kapat, A., J. K. Jung, and Y. H. Park. 1997. Enhancement of extracellular glucose oxidase production in pH-stat feed-back controlled fed-batch culture of recombinant Saccharomyces cerevisiae. Biotechnol. Lett. 20: 683-686   DOI   ScienceOn
7 Li, Y. H., Z. K. Zhao, and F. Bai. 2007. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enz. Microb. Technol. 41: 312-317   DOI   ScienceOn
8 Lim, J. S., M. C. Park, J. H. Lee, S. W. Park, and S. W. Kim. 2005. Optimization of culture medium and conditions for neofructooligosaccharides production by Penicillium citrinum. Eur. Food Res. Technol. 221: 639-644   DOI   ScienceOn
9 Wen, S., T. Zhang, and T. Tan. 2006. Maximizing production of glutathione by amino acid modulation and high-cell-density fedbatch culture of Saccharomyces cerevisiae. Process Biochem. 41: 2424-2428   DOI   ScienceOn
10 Kim, S. J., G. J. Kim, D. H. Park, and Y. W. Ryu. 2003. Highlevel production of astaxanthin by fed-batch culture of mutant strain Phaffia rhodozyma AJ-6-1. J. Microbiol. Biotechnol. 13: 175-181   ScienceOn
11 Liu, Y. P., P. Zheng, Z. H. Sun, Y. Ni, J. J. Dong, and L. L. Zhu. 2008. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour. Technol. 99: 1736-1742   DOI   ScienceOn
12 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 3: 426-428   DOI
13 Crueger, W. and A. Crueger. 2000. Substrates for industrial fermentation, pp. 59-62. In W. Crueger and A. Crueger (eds.). Biotechnology, A Textbook of Industrial Microbiology. Panima Publishing Corporation, New Delhi
14 Fiechter, A. and W. Seghezzi. 1992. Regulation of glucose metabolism in growing yeast cells. J. Biotechnol. 29: 27-45   DOI   ScienceOn
15 Vu, V. H. and K. Kim. 2009. Ethanol production from rice winery waste - rice wine cake by simultaneous saccharification and fermentation without cooking. J. Microbiol. Biotechnol. 19: 1161-1168   DOI   PUBMED   ScienceOn
16 Kharel, M. K., H. C. Lee, J. K. Sohng, and K. Liou. 2002. Statistical optimization of medium components for the improved production of cystocin by Streptomyces sp. GCA0001. J. Ind. Eng. Chem. 8: 427-431   ScienceOn
17 White, J. 1954. Yeast Technology. Chapman & Hall, Ltd., London
18 White, P. and L. A. Johnson. 2003. Corn, Chemistry and Technology, 2nd Ed. American Association of Cereal Chemists, St. Paul, MN
19 Sonnleitner, B. and O. Kappeli. 1986. Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis. Biotechnol. Bioeng. 28: 927-937   DOI   ScienceOn
20 Abrahao-Neto, J., P. Infanti, and M. Vitolo. 1997. Influence of pH, temperature and dissolved oxygen concentration on the production of glucose-6-phosphate dehydrogenase and invertase by S. cerevisiae. Braz. J. Chem. Eng. 14: 89-94
21 Mendoza-Vega, O., J. Sabatie, and S. W. Brown. 1994. Industrial production of heterologous proteins by fed-batch cultures of the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 15: 369-410   DOI   ScienceOn
22 Pan, J. G., M. Y. Kwak, and J. S. Rhee. 1986. High density cell culture of Rhodotorula glutinis using oxygen-enriched air. Biotechnol. Lett. 8: 715-718   DOI
23 Kim, Y. H., S. W. Kang, J. H. Lee, H. I. Chang, C. W. Yun, H. D. Paik, C. W. Kang, and S. W. Kim. 2007. High cell density fermentation of Saccharomyces cerevisiae JUL3 in fed-batch culture for the production of $\beta$-glucan. J. Ind. Eng. Chem. 13: 153-158   ScienceOn
24 Hoek, P. V., E. D. Hulster, J. P. V. Dijken, and J. T. Pronk. 2000. Fermentative capacity in high-cell-density fed-batch cultures of Baker's yeast. Biotechnol. Bioeng. 68: 517-522   DOI   ScienceOn
25 Liggett, W. R. and H. Koffler. 1948. Corn steep liquor in microbiology. Bacteriol. Rev. 12: 297-311   PUBMED   ScienceOn
26 Shang, F., S. Wen, X. Wang, and T. Tan. 2006. High-celldensity fermentation for ergosterol production by Saccharomyces cerevisiae. J. Biosci. Bioeng. 101: 38-41   DOI   ScienceOn
27 Abrahao-Neto, J., P. Infanti, and M. Vitolo. 1996. Hexokinase production from S. cerevisiae: Culture conditions. Appl. Biochem. Biotechnol. 57/58: 407-412   DOI   ScienceOn
28 Yamauchi, H., H. Mori, T. Kobayashi, and S. Shimizu. 1983. Mass production of lipids by Lipomyces starkeyi in microcomputeraided fed-batch culture. J. Ferment. Technol. 61: 275-280