• Title/Summary/Keyword: measurable function

Search Result 110, Processing Time 0.02 seconds

CENTRAL LIMIT THEOREMS FOR BELLMAN-HARRIS PROCESSES

  • Kang, Hye-Jeong
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.923-943
    • /
    • 1999
  • In this paper we consider functionals of the empirical age distribution of supercritical Bellman-Harris processes. Let f : R+ longrightarrow R be a measurable function that integrates to zero with respect to the stable age distribution in a supercritical Bellman-Harris process with no extinction. We present sufficient conditions for the asymptotic normality of the mean of f with respect to the empirical age distribution at time t.

  • PDF

BLOW-UP OF SOLUTIONS FOR WAVE EQUATIONS WITH STRONG DAMPING AND VARIABLE-EXPONENT NONLINEARITY

  • Park, Sun-Hye
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.633-642
    • /
    • 2021
  • In this paper we consider the following strongly damped wave equation with variable-exponent nonlinearity utt(x, t) - ∆u(x, t) - ∆ut(x, t) = |u(x, t)|p(x)-2u(x, t), where the exponent p(·) of nonlinearity is a given measurable function. We establish finite time blow-up results for the solutions with non-positive initial energy and for certain solutions with positive initial energy. We extend the previous results for strongly damped wave equations with constant exponent nonlinearity to the equations with variable-exponent nonlinearity.

SOME ESTIMATES FOR GENERALIZED COMMUTATORS OF MULTILINEAR CALDERÓN-ZYGMUND OPERATORS

  • Honghai Liu;Zengyan Si;Ling Wang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.541-560
    • /
    • 2023
  • Let T be an m-linear Calderón-Zygmund operator. $T_{{\vec{b}S}}$ is the generalized commutator of T with a class of measurable functions {bi}i=1. In this paper, we will give some new estimates for $T_{{\vec{b}S}}$ when {bi}i=1 belongs to Orlicz-type space and Lipschitz space, respectively.

A Didactical Analysis on Circular Measure (호도법에 관한 교수학적 고찰)

  • Kang, Mee-Kwang
    • The Mathematical Education
    • /
    • v.50 no.3
    • /
    • pp.355-365
    • /
    • 2011
  • The purpose of this study is to provide mathematical knowledge for supporting the didactical knowledge on circular measure and radian in the high school curriculum. We show that circular measure related to arcs can be mathematically justified as an angular measure and radian is a well defined concept to be able to reconcile the values of trigonometric functions and ones of circular functions, which are real variable functions. Radian has two-fold intrinsic attributes of angular measure and arc measure on the unit circle, in particular, the latter property plays a very important role in simplifying the trigonometric derivatives. To improve students's low academic achievement in trigonometry section, the useful advantage and the background over the introduction of radian should be preferentially taught and recognized to students. We suggest some teaching plans to practice in the class of elementary and middle school for enhancing teachers' and students' understanding of radian.

VOLUME MEAN OPERATOR AND DIFFERENTIATION RESULTS ASSOCIATED TO ROOT SYSTEMS

  • Rejeb, Chaabane
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1981-1990
    • /
    • 2017
  • Let R be a root system in $\mathbb{R}^d$ with Coxeter-Weyl group W and let k be a nonnegative multiplicity function on R. The generalized volume mean of a function $f{\in}L^1_{loc}(\mathbb{R}^d,m_k)$, with $m_k$ the measure given by $dmk(x):={\omega}_k(x)dx:=\prod_{{\alpha}{\in}R}{\mid}{\langle}{\alpha},x{\rangle}{\mid}^{k({\alpha})}dx$, is defined by: ${\forall}x{\in}\mathbb{R}^d$, ${\forall}r$ > 0, $M^r_B(f)(x):=\frac{1}{m_k[B(0,r)]}\int_{\mathbb{R}^d}f(y)h_k(r,x,y){\omega}_k(y)dy$, where $h_k(r,x,{\cdot})$ is a compactly supported nonnegative explicit measurable function depending on R and k. In this paper, we prove that for almost every $x{\in}\mathbb{R}^d$, $lim_{r{\rightarrow}0}M^r_B(f)(x)= f(x)$.

A poisson equation associated with an integral kernel operator

  • Kang, Soon-Ja
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.367-375
    • /
    • 1996
  • Suppose the kernel function $\kappa$ belongs to $S(R^2)$ and is symmetric such that $ < \otimes x, \kappa >\geq 0$ for all $x \in S'(R)$. Let A be the class of functions f such that the function f is measurable on $S'(R)$ with $\int_{S'(R)}$\mid$f((I + tK)^{\frac{1}{2}}x$\mid$^2d\mu(x) < M$ for some $M > 0$ and for all t > 0, where K is the integral operator with kernel function $\kappa$. We show that the \lambda$-potential $G_Kf$ of f is a weak solution of $(\lambda I - \frac{1}{2} \tilde{\Xi}_{0,2}(\kappa))_u = f$.

  • PDF

THE AUTOCONTINUITY OF MONOTONE INTERVAL-VALUED SET FUNCTIONS DEFINED BY THE INTERVAL-VALUED CHOQUET INTEGRAL

  • Jang, Lee-Chae
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.171-183
    • /
    • 2008
  • In a previous work [18], the authors investigated autocontinuity, converse-autocontinuity, uniformly autocontinuity, uniformly converse-autocontinuity, and fuzzy multiplicativity of monotone set function defined by Choquet integral([3,4,13,14,15]) instead of fuzzy integral([16,17]). We consider nonnegative monotone interval-valued set functions and nonnegative measurable interval-valued functions. Then the interval-valued Choquet integral determines a new nonnegative monotone interval-valued set function which is a generalized concept of monotone set function defined by Choquet integral in [18]. These integrals, which can be regarded as interval-valued aggregation operators, have been used in [10,11,12,19,20]. In this paper, we investigate some characterizations of monotone interval-valued set functions defined by the interval-valued Choquet integral such as autocontinuity, converse-autocontinuity, uniform autocontinuity, uniform converse-autocontinuity, and fuzzy multiplicativity.

GENERALIZED SOLUTIONS OF IMPULSIVE CONTROL SYSTEMS CORRESPONDING TO CONTROLS OF BOUNDED VARIATION

  • Shin, Chang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.581-598
    • /
    • 1997
  • This paper is concerned with the impulsive control problem $$ \dot{x}(t) = f(t, x) + g(t, x)\dot{u}(t), t \in [0, T], x(0) = \overline{x}, $$ where u is a possibly discontinuous control function of bounded variation, $f : R \times R^n \mapsto R^n$ is a bounded and Lipschitz continuous function, and $g : R \times R^n \mapsto R^n$ is continuously differentiable w.r.t. the variable x and satisfies $\mid$g(t,\cdot) - g(s,\cdot)$\mid$ \leq \phi(t) - \phi(s)$, for some increasing function $\phi$ and every s < t. We show that the map $u \mapsto x_u$ is Lipschitz continuous when u ranges in the set of step functions whose total variations are uniformly bounded, where $x_u$ is the solution of the impulsive control system corresponding to u. We also define the generalized solution of the impulsive control system corresponding to a measurable control functin of bounded variation.

  • PDF

Structural characterizations of monotone interval-valued set functions defined by the interval-valued Choquet integral (구간치 쇼케이적분에 의해 정의된 단조 구간치 집합함수의 구조적 성질에 관한 연구)

  • Jang, Lee-Chae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.311-315
    • /
    • 2008
  • We introduce nonnegative interval-valued set functions and nonnegative measurable interval-valued Junctions. Then the interval-valued Choquet integral determines a new nonnegative monotone interval-valued set function which is a generalized concept of monotone set function defined by Choquet integral in [17]. We also obtained absolutely continuity of them in [9]. In this paper, we investigate some characterizations of the monotone interval-valued set function defined by the interval-valued Choquet integral, and such as subadditivity, superadditivity, null-additivity, converse-null-additivity.

$L^p$ 공간의 가분성에 관한 연구

  • 김만호
    • The Mathematical Education
    • /
    • v.21 no.3
    • /
    • pp.7-11
    • /
    • 1983
  • A measurable function f defined on a measurable subset A of the real line R is called pth power summable on A if │f│$^{p}$ is integrable on A and the set of all pth power summable functions on A is denoted by L$^{p}$ (A). For each member f in L$^{p}$ (A), we define ∥f∥$_{p}$ =(equation omitted) For real numbers p and q where (equation omitted) and (equation omitted), we discuss the Holder's inequality ∥fg∥$_1$<∥f∥$_{p}$ ∥g∥$_{q}$ , f$\in$L$^{p}$ (A), g$\in$L$^{q}$ (A) and the Minkowski inequality ∥+g∥$_{p}$ <∥f∥$_{p}$ +∥g∥$_{p}$ , f,g$\in$L$^{p}$ (A). In this paper also discuss that L$_{p}$ (A) becomes a metric space with the metric $\rho$ : L$^{p}$ (A) $\times$L$^{p}$ (A) longrightarrow R where $\rho$(f,g)=∥f-g∥$_{p}$ , f,g$\in$L$^{p}$ (A). Then, in this paper prove the Riesz-Fischer theorem, i.e., the space L$^{p}$ (A) is complete and that the space L$^{p}$ (A) is separable.

  • PDF