• 제목/요약/키워드: mean-variance portfolio model

검색결과 23건 처리시간 0.02초

Optimal Portfolio Models for an Inefficient Market

  • GINTING, Josep;GINTING, Neshia Wilhelmina;PUTRI, Leonita;NIDAR, Sulaeman Rahman
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권2호
    • /
    • pp.57-64
    • /
    • 2021
  • This research attempts to formulate a new mean-risk model to replace the Markowitz mean-variance model by altering the risk measurement using ARCH variance instead of the original variance. In building the portfolio, samples used are closing prices of Indonesia Composite Stock Index and Indonesia Composite Bonds Index from 2013 to 2018. This study is a qualitative study using secondary data from the Indonesia Stock Exchange and Indonesia Bonds Pricing Agency. This research found that Markowitz's model is still superior when utilized in daily data, while the mean-ARCH model is appropriate with wider gap data like monthly observation. The Historical return has also proven to be more appropriate as a benchmark in selecting an optimal portfolio rather than a risk-free rate in an inefficient market. Therefore Mean-ARCH is more appropriate when utilized under data that have a wider gap between the period. The research findings show that the portfolio combination produced is inefficient due to the market inefficiency indicated by the meager return of the stock, while bears notable standard deviation. Therefore, the researcher of this study proposed to replace the risk-free rate as a benchmark with the historical return. The Historical return proved to be more realistic than the risk-free rate in inefficient market conditions.

Mean-Variance 수리 계획을 이용한 최적 포트폴리오 투자안 도출 (The Optimal Mean-Variance Portfolio Formulation by Mathematical Planning)

  • 김태영
    • 산업경영시스템학회지
    • /
    • 제32권4호
    • /
    • pp.63-71
    • /
    • 2009
  • The traditional portfolio optimization problem is to find an investment plan for securities with reasonable trade-off between the rate of return and the risk. The seminal work in this field is the mean-variance model by Markowitz, which is a quadratic programming problem. Since it is now computationally practical to solve the model, a number of alternative models to overcome this complexity have been proposed. In this paper, among the alternatives, we focus on the Mean Absolute Deviation (MAD) model. More specifically, we developed an algorithm to obtain an optimal portfolio from the MAD model. We showed mathematically that the algorithm can solve the problem to optimality. We tested it using the real data from the Korean Stock Market. The results coincide with our expectation that the method can solve a variety of problems in a reasonable computational time.

The Admissible Multiperiod Mean Variance Portfolio Selection Problem with Cardinality Constraints

  • Zhang, Peng;Li, Bing
    • Industrial Engineering and Management Systems
    • /
    • 제16권1호
    • /
    • pp.118-128
    • /
    • 2017
  • Uncertain factors in finical markets make the prediction of future returns and risk of asset much difficult. In this paper, a model,assuming the admissible errors on expected returns and risks of assets, assisted in the multiperiod mean variance portfolio selection problem is built. The model considers transaction costs, upper bound on borrowing risk-free asset constraints, cardinality constraints and threshold constraints. Cardinality constraints limit the number of assets to be held in an efficient portfolio. At the same time, threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Because of these limitations, the proposed model is a mix integer dynamic optimization problem with path dependence. The forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, to evaluate the model, our result of a meaning example is compared to the terminal wealth under different constraints.

공분산 추정방법에 따른 최적자산배분 성과 분석 (Covariance Estimation and the Effect on the Performance of the Optimal Portfolio)

  • 이순희
    • 한국경영과학회지
    • /
    • 제39권4호
    • /
    • pp.137-152
    • /
    • 2014
  • In this paper, I suggest several techniques to estimate covariance matrix and compare the performance of the global minimum variance portfolio (GMVP) in terms of out of sample mean standard deviation and return. As a result, the return differences among the GMVPs are insignificant. The mean standard deviation of the GMVP using historical covariance is sensitive to the estimation window and the number of assets in the portfolio. Among the model covariance, the GMVP using constant systematic risk ratio model or using short sale restriction shows the best performance. The performance difference between the GMVPs using historical covariance and model covariance becomes insignificant as the historical covariance is estimated with longer estimation window. Lastly, the implied volatilities from ELW prices do not lead to superior performance to the historical variance.

구조적 시계열모형을 이용한 자산포트폴리오 관리의 개선 방안 (A Study on the Way to Improve Quality of Asset Portfolio Management Using Structural Time-Series Model)

  • 이창수
    • 품질경영학회지
    • /
    • 제31권3호
    • /
    • pp.160-171
    • /
    • 2003
  • Criteria for the comparison of quality of asset portfolio management are risk and return. In this paper a method to use structural time-series model to determine an optimal portfolio for the improvement of quality of asset portfolio management is suggested. In traditional mean variance analysis expected return is assumed to be time-invariant. However, it is more realistic to assume that expected return is temporally dynamic and structural time-series model can be used to reflect time-varying nature of return. A data set from an insurance company was used to show validity of suggested method.

최소위험 종목과 비양의 상관관계를 갖는 종목들 분산투자 포트폴리오 최적화 (Portfolio Optimization of Diversified Investments with Minimum Risk Asset and Non-Positive Correlation Assets)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.103-110
    • /
    • 2022
  • 본 논문은 단일 종목에 투자금을 전액 투자하는 것에 비해 다수의 종목에 분산투자하는 것이 투자 위험을 보다 감소시킬 수 있다는 포트폴리오 최적화 문제를 다룬다. 널리 알려진 Markowitz의 수익률에 대한 평균-분산 기법(MV)은 위험요인인 분산(또는 표준편차)을 감소시키기 위해 지배원리를 적용하여 효율적 투자선에 있는 종목들을 대상으로 분산투자하는 포트폴리오를 구성하였다. 반면에, 본 논문에서는 최소표준편차를 가진 종목을 필수 투자종목으로 선정하고, 필수 투자종목과 비양(음의, 무)의 상관관계를 갖는 종목들을 대상으로 포트폴리오를 형성하였다. 제안된 방법을 실험한 결과 MV에 비해 보다 적은 위험(표준편차)을 보였다.

지능형 전망모형을 결합한 로보어드바이저 알고리즘 (Robo-Advisor Algorithm with Intelligent View Model)

  • 김선웅
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.39-55
    • /
    • 2019
  • 최근 은행과 증권회사를 중심으로 다양한 로보어드바이저 금융상품들이 출시되고 있다. 로보어드바이저는 사람 대신 컴퓨터가 포트폴리오 자산배분에 대한 투자 결정을 실행하기 때문에 다양한 자산배분 알고리즘이 활용되고 있다. 본 연구에서는 대표적 로보어드바이저 알고리즘인 블랙리터만모형의 강점을 살리면서 객관적 투자자 전망을 도출할 수 있는 지능형 전망모형을 제안하고 이를 내재균형수익률과 결합하여 최종 포트폴리오를 도출하는 로보어드바이저 자산배분 알고리즘을 새로이 제안하며, 실제 주가자료를 이용한 실증분석 결과를 통해 전문가의 주관적 전망을 대신할 수 있는 지능형 전망모형의 실무적 적용 가능성을 보여주고자 한다. 그동안 주가 예측에서 우수한 성과를 보여주었던 기계학습 방법 중 SVM 모형을 이용하여 각 자산별 기대수익률에 대한 예측과 예측 확률을 도출하고 이를 각각 기대수익률에 대한 투자자 전망과 전망에 대한 신뢰도 수준의 입력변수로 활용하는 지능형 전망모형을 제안하였다. 시장포트폴리오로부터 도출된 내재균형수익률과 지능형 전망모형의 기대수익률, 확률을 결합하여 최종적인 블랙리터만모형의 최적포트폴리오를 도출하였다. 주가자료는 2008년부터 2018년까지의 132개월 동안의 8개의 KOSPI 200 섹터지수 월별 자료를 분석하였다. 블랙리터만모형으로 도출된 최적포트폴리오의 결과가 기존의 평균분산모형이나 리스크패리티모형 등과 비교하여 우수한 성과를 보여주었다. 구체적으로 2008년부터 2015년까지의 In-Sample 자료에서 최적화된 블랙리터만모형을 2016년부터 2018년까지의 Out-Of-Sample 기간에 적용한 실증분석 결과에서 다른 알고리즘보다 수익과 위험 모두에서 좋은 성과를 기록하였다. 총수익률은 6.4%로 최고 수준이며, 위험지표인 MDD는 20.8%로 최저수준을 기록하였다. 수익과 위험을 동시에 고려하여 투자 성과를 측정하는 샤프비율 역시 0.17로 가장 좋은 결과를 보여주었다. 증권계의 애널리스트 전문가들이 발표하는 투자자 전망자료의 신뢰성이 낮은 상태에서, 본 연구에서 제안된 지능형 전망모형은 현재 빠른 속도로 확장되고 있는 로보어드바이저 관련 금융상품을 개발하고 운용하는 실무적 관점에서 본 연구는 의의가 있다고 판단된다.

비중 상한 제약조건에 따른 포트폴리오 성과에 대한 투자 비중 분석 (Weight Vector Analysis to Portfolio Performance with Diversification Constraints)

  • 박경찬;김홍선;김성문
    • 경영과학
    • /
    • 제33권4호
    • /
    • pp.51-64
    • /
    • 2016
  • The maximum weight of single stock in mutual fund is limited by regulations to enforce diversification. Under incomplete information with added constraints on portfolio weights, enhanced performance had been reported in previous researches. We analyze a weight vector to examine the effects of additional constraints on the portfolio's performance by computing the Euclidean distance from the in-sample tangency portfolio, as opposed to previous researches which analyzed ex-post return only. Empirical experiment was performed on Mean-variance and Minimum-variance model with Fama French's 30 industry portfolio and 10 industry portfolio for the last 1,000 months from August 1932 to November 2015. We find that diversification-constrained portfolios have 7% to 26% smaller Euclidean distances with the benchmark portfolio compared to those of unconstrained portfolios and 3% to 11% greater Sharpe Ratio.

평균-분산 모형을 이용한 화석에너지원 소비조합 구성에 관한 연구 (A Study on Construction of an Optimal Fossil Fuel Mix: A Portfolio-Based Approach)

  • 차경수
    • 자원ㆍ환경경제연구
    • /
    • 제20권2호
    • /
    • pp.335-356
    • /
    • 2011
  • 본 연구에서는 Markowitz (1952)의 평균-분산 모형과 지배원리에 입각하여 원유, 석탄, 천연가스로 대표되는 화석에너지원의 최적 소비조합을 구축하려 하였다. 이를 위해 1달러당 열량으로 정의된 화석에너지원들의 편익변동을 동태은닉공통인자 모형을 이용하여 동행부분과 개별 에너지원의 특이적 수급상황에 기초한 변동으로 분해한 후, 그 결과에 기초하여 최적 화석에너지원의 최적 소비조합을 구성하였다. 분석결과, 평균-분산 모형에서 최적 소비조합을 의미하는 효율적 프론티어 선상의 소비조합들에서는 사회적으로 도달 가능한 최저 수준의 원유소비 비중을 유지하면서 석탄보다는 천연가스의 소비비중을 높여야 하는 것으로 나타났다. 이와 같은 결과는 현재 우리나라에서 추구하고 있는 원유 및 석탄의 소비비중 축소전략과도 일치하는 결과라 할 수 있으며, 원유소비의 비중축소가 화석에너지원의 소비로부터 얻을 수 있는 편익향상과 함께 편익변동에 따르는 경제활동의 불안정성을 축소시킬 수 있는 방법임을 지적하는 것이라 할 수 있다.

  • PDF

퍼터베이션 방법을 활용한 평균-숏폴 포트폴리오 최적화 (Mean-shortfall optimization problem with perturbation methods)

  • 원하연;박세영
    • 응용통계연구
    • /
    • 제34권1호
    • /
    • pp.39-56
    • /
    • 2021
  • Markowitz (1952)의 분산투자 모형 발표 이후 포트폴리오 최적화에 대한 많은 연구가 이루어졌다. 마코위츠의 평균-분산 포트폴리오 최적화 모형은 수익 분포가 정규분포를 따른다는 가정하에서 성립한다. 그러나 실생활에서는 수익 분포가 정규분포를 따르지 않는 경우가 존재한다. 또한 분산은 이상치의 영향을 많이 받는 민감한 지표이다. 이런 분산의 단점을 보완할 수 있는 하방위험인 숏폴(Shortfall)을 위험 지표로 적용함으로써 수익 분포에 대해 최적화가 가능한 평균-숏폴 포트폴리오 모형이 제안되었다. 또한 Jorion (2003)과 Park(2019)은 포트폴리오의 위험도를 최소화하는 동시에 적은 수의 자산으로 구성(sparse)되고 안정적(stable)인 포트폴리오를 얻는 퍼터베이션 방법을 제안하였다. 본 논문에서는 평균-숏폴 포트폴리오 모형에 퍼터베이션 방법과 adaptive Lasso를 적용하여 사용되는 자산의 수가 적으면서 안정적이고 쉽게 적용 가능한 포트폴리오 모형을 제안한다. 그리고 실증 데이터 분석을 통하여 모형의 타당성을 입증한다.