• Title/Summary/Keyword: mean-variance portfolio model

Search Result 23, Processing Time 0.021 seconds

Optimal Portfolio Models for an Inefficient Market

  • GINTING, Josep;GINTING, Neshia Wilhelmina;PUTRI, Leonita;NIDAR, Sulaeman Rahman
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.57-64
    • /
    • 2021
  • This research attempts to formulate a new mean-risk model to replace the Markowitz mean-variance model by altering the risk measurement using ARCH variance instead of the original variance. In building the portfolio, samples used are closing prices of Indonesia Composite Stock Index and Indonesia Composite Bonds Index from 2013 to 2018. This study is a qualitative study using secondary data from the Indonesia Stock Exchange and Indonesia Bonds Pricing Agency. This research found that Markowitz's model is still superior when utilized in daily data, while the mean-ARCH model is appropriate with wider gap data like monthly observation. The Historical return has also proven to be more appropriate as a benchmark in selecting an optimal portfolio rather than a risk-free rate in an inefficient market. Therefore Mean-ARCH is more appropriate when utilized under data that have a wider gap between the period. The research findings show that the portfolio combination produced is inefficient due to the market inefficiency indicated by the meager return of the stock, while bears notable standard deviation. Therefore, the researcher of this study proposed to replace the risk-free rate as a benchmark with the historical return. The Historical return proved to be more realistic than the risk-free rate in inefficient market conditions.

The Optimal Mean-Variance Portfolio Formulation by Mathematical Planning (Mean-Variance 수리 계획을 이용한 최적 포트폴리오 투자안 도출)

  • Kim, Tai-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.63-71
    • /
    • 2009
  • The traditional portfolio optimization problem is to find an investment plan for securities with reasonable trade-off between the rate of return and the risk. The seminal work in this field is the mean-variance model by Markowitz, which is a quadratic programming problem. Since it is now computationally practical to solve the model, a number of alternative models to overcome this complexity have been proposed. In this paper, among the alternatives, we focus on the Mean Absolute Deviation (MAD) model. More specifically, we developed an algorithm to obtain an optimal portfolio from the MAD model. We showed mathematically that the algorithm can solve the problem to optimality. We tested it using the real data from the Korean Stock Market. The results coincide with our expectation that the method can solve a variety of problems in a reasonable computational time.

The Admissible Multiperiod Mean Variance Portfolio Selection Problem with Cardinality Constraints

  • Zhang, Peng;Li, Bing
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.118-128
    • /
    • 2017
  • Uncertain factors in finical markets make the prediction of future returns and risk of asset much difficult. In this paper, a model,assuming the admissible errors on expected returns and risks of assets, assisted in the multiperiod mean variance portfolio selection problem is built. The model considers transaction costs, upper bound on borrowing risk-free asset constraints, cardinality constraints and threshold constraints. Cardinality constraints limit the number of assets to be held in an efficient portfolio. At the same time, threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Because of these limitations, the proposed model is a mix integer dynamic optimization problem with path dependence. The forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, to evaluate the model, our result of a meaning example is compared to the terminal wealth under different constraints.

Covariance Estimation and the Effect on the Performance of the Optimal Portfolio (공분산 추정방법에 따른 최적자산배분 성과 분석)

  • Lee, Soonhee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.4
    • /
    • pp.137-152
    • /
    • 2014
  • In this paper, I suggest several techniques to estimate covariance matrix and compare the performance of the global minimum variance portfolio (GMVP) in terms of out of sample mean standard deviation and return. As a result, the return differences among the GMVPs are insignificant. The mean standard deviation of the GMVP using historical covariance is sensitive to the estimation window and the number of assets in the portfolio. Among the model covariance, the GMVP using constant systematic risk ratio model or using short sale restriction shows the best performance. The performance difference between the GMVPs using historical covariance and model covariance becomes insignificant as the historical covariance is estimated with longer estimation window. Lastly, the implied volatilities from ELW prices do not lead to superior performance to the historical variance.

A Study on the Way to Improve Quality of Asset Portfolio Management Using Structural Time-Series Model (구조적 시계열모형을 이용한 자산포트폴리오 관리의 개선 방안)

  • 이창수
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.160-171
    • /
    • 2003
  • Criteria for the comparison of quality of asset portfolio management are risk and return. In this paper a method to use structural time-series model to determine an optimal portfolio for the improvement of quality of asset portfolio management is suggested. In traditional mean variance analysis expected return is assumed to be time-invariant. However, it is more realistic to assume that expected return is temporally dynamic and structural time-series model can be used to reflect time-varying nature of return. A data set from an insurance company was used to show validity of suggested method.

Portfolio Optimization of Diversified Investments with Minimum Risk Asset and Non-Positive Correlation Assets (최소위험 종목과 비양의 상관관계를 갖는 종목들 분산투자 포트폴리오 최적화)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.103-110
    • /
    • 2022
  • This paper deals with portfolio optimization problem that you could lower the total risk of an investment portfolio by adding risky assets to the mix than the minimum risk of single asset. Popular Markowitz's mean-variance(MV) model construct the portfolio with the point in the efficient frontier using principle of domination where the variance is minimized for a given mean return. While this paper suggest the portfolio with minimum risk asset with non-positive(negative and uncorrelated) correlation assets to it. As a result of experiments, the proposed method shows lower risk(standard deviation) than MV.

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

Weight Vector Analysis to Portfolio Performance with Diversification Constraints (비중 상한 제약조건에 따른 포트폴리오 성과에 대한 투자 비중 분석)

  • Park, Kyungchan;Kim, Hongseon;Kim, Seongmoon
    • Korean Management Science Review
    • /
    • v.33 no.4
    • /
    • pp.51-64
    • /
    • 2016
  • The maximum weight of single stock in mutual fund is limited by regulations to enforce diversification. Under incomplete information with added constraints on portfolio weights, enhanced performance had been reported in previous researches. We analyze a weight vector to examine the effects of additional constraints on the portfolio's performance by computing the Euclidean distance from the in-sample tangency portfolio, as opposed to previous researches which analyzed ex-post return only. Empirical experiment was performed on Mean-variance and Minimum-variance model with Fama French's 30 industry portfolio and 10 industry portfolio for the last 1,000 months from August 1932 to November 2015. We find that diversification-constrained portfolios have 7% to 26% smaller Euclidean distances with the benchmark portfolio compared to those of unconstrained portfolios and 3% to 11% greater Sharpe Ratio.

A Study on Construction of an Optimal Fossil Fuel Mix: A Portfolio-Based Approach (평균-분산 모형을 이용한 화석에너지원 소비조합 구성에 관한 연구)

  • Cha, Kyungsoo
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.335-356
    • /
    • 2011
  • In this paper, we attempted to suggest a way to evaluate appropriateness and efficiency for the energy consumption structure. For this, based on Markowitz (1952)' mean-variance portfolio model, we constructed an optimal fossil fuel mix. In constructing the optimal mix, we first defined returns on fossil fuels (oil, coal and natural gas) as TOE (Ton of Oil Equivalent) per $1. Then, by using the dynamic latent common factor model, we decomposed the growth rates of the returns on each fossil fuel into two parts : the common part and the idiosyncratic part. Finally, based on the results from the dynamic latent common factor model, we constructed the optimal fossil fuel mix implied by the mean-variance portfolio model. Our results indicate that for the fossil fuel mix to be on the efficient frontier, it is crucial to reduce oil consumption as low as possible. Moreover, our results imply that it is more efficient to increase natural gas consumption rather than coal consumption in reducing oil consumption. These results are in line with the strategies for the future energy consumption structure pursued by Korea and indicate that reduction in oil use can improve overall efficiency in energy consumption.

  • PDF

Mean-shortfall optimization problem with perturbation methods (퍼터베이션 방법을 활용한 평균-숏폴 포트폴리오 최적화)

  • Won, Hayeon;Park, Seyoung
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.39-56
    • /
    • 2021
  • Many researches have been done on portfolio optimization since Markowitz (1952) published a diversified investment model. Markowitz's mean-variance portfolio optimization problem is established under the assumption that the distribution of returns follows a normal distribution. However, in real life, the distribution of returns does not follow a normal distribution, and variance is not a robust statistic as it is heavily influenced by outliers. To overcome these potential issues, mean-shortfall portfolio model was proposed that utilized downside risk, shortfall, as a risk index. In this paper, we propose a perturbation method that uses the shortfall as a risk index of the portfolio. The proposed portfolio utilizes an adaptive Lasso to obtain a sparse and stable asset selection because it can reduce management and transaction costs. The proposed optimization is easily applicable as it can be computed using an efficient linear programming. In our real data analysis, we show the validity of the proposed perturbation method.