• Title/Summary/Keyword: mean-variance model

Search Result 476, Processing Time 0.027 seconds

Effect of Measurement Error on the Determination of the Optimal Process Mean for a Canning Process (캔 공정의 최적공정평균을 결정하는데 있어서 측정오차의 영향)

  • Hong, Sung-Hoon;Lee, Min-Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.2
    • /
    • pp.41-50
    • /
    • 1994
  • Consider a canning process where cans are filled with an expensive ingredient. Cans weighting above the specified limit are sold in a regular market for a fixed price, and underfilled cans are emptied and refilled at the expense of a reprocessing cost. In this paper, the effect of measurement error on the determination of the optimal process mean for a canning process is examined. It is assumed that the quantity X of ingredient in a can is normally distributed with unknown mean and known variance, and the observed value Y of X is also normally distributed with known mean and variance. A profit model is constructed which involves selling price. cost of ingredients, reprocessing cost. and cost from an accepted nonconforming can, and methods of finding the optimal process mean and the cutoff value on Y are presented. It is shown that the optimal process mean increases. and the expected profit decreases when the measurement error is relatively large in comparison to the process variance.

  • PDF

Updating algorithms in statistical computations (통계계산에서의 갱신 알고리즘에 관한 연구)

  • 전홍석
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.2
    • /
    • pp.283-292
    • /
    • 1992
  • Updating algorithms are studied for the basic statistics (mean, variance). For a linear model, a recursive formulae for least squares estimators of regression coefficients, residual sum of squares and variance-covariance matrix are also studied. Hotelling's $T^2$ statistics can be calculated recursively using the recursive formulae of mean vector and variance-covariance matrix without computing the sample variance-covariance matrix at each stage.

  • PDF

Change of temperature patterns in Seoul (서울의 온도 패턴 변화)

  • Jang, Hak-Jin;Joo, Yong-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.89-96
    • /
    • 2009
  • We examined the characteristics of temperature variation in Seoul between 1961 to 2008 using the spectral heteroscedastic model. The mean function in the propsed model explains the season effect using periodic functions and the overall increase using the quadratic regression spline. The variance function also had periodic functions to explain the seasonality of variance. We found that there has been annual mean temperature increase by about $1.5^{\circ}C$ for the last 48 years. The increase of annual mean temperature was mainly caused by the increase in winter, which made the amplitude decreased.

  • PDF

Monitoring System for Abnormal Cutting States in the Drilling Operation using Motor Current (모터전류를 이용한 드릴가공에서의 절삭이상상태 감시 시스템)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.98-107
    • /
    • 1995
  • The in-process detection of drill wear and breakage is one of the most importnat technical problems in unmaned machining system. In this paper, the monitoring system is developed to monitor abnormal drilling states such as drill breakage, drill wear and unstable cutting using motor current. Drill breakage is detected by level monitoring. Tool wear is classified by fuzzy pattern recognition. The key feature for classification of tool wear is the estimated flank wear which is calculated by the proposed flank wear model. The characteristic of the model is not sensitive to the variation of cutting conditions but is sensitive to drill wear state. Unstable cutting states due to the unsmooth chip disposal and the overload are monitored by the variance/mean ratio of spindle motor current. Variance/mean ratio also includes the information about the prediction of drill wear and drill breakage. The evaluation experiments have shown that the developed system works very well.

  • PDF

Determination of the Resetting Time to the Process Mean Shift by the Loss Function (손실함수를 적용한 공정평균 이동에 대한 조정시기 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.165-172
    • /
    • 2017
  • Machines are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. Under the process mean shift, production cost, failure cost and quality loss function cost are increasing continuously. Therefore a periodic preventive resetting the process is necessary. We suppose that the wear level is observable. In this case, process mean shift problem has similar characteristics to the maintenance policy model. In the previous studies, process mean shift problem has been studied in several fields such as 'Tool wear limit', 'Canning Process' and 'Quality Loss Function' separately or partially integrated form. This paper proposes an integrated cost model which involves production cost by the material, failure cost by the nonconforming items, quality loss function cost by the deviation between the quality characteristics from the target value and resetting the process cost. We expand this process mean shift problem a little more by dealing the process variance as a function, not a constant value. We suggested a multiplier function model to the process variance according to the analysis result with practical data. We adopted two-side specification to our model. The initial process mean is generally set somewhat above the lower specification. The objective function is total integrated costs per unit wear and independent variables are wear limit and initial setting process mean. The optimum is derived from numerical analysis because the integral form of the objective function is not possible. A numerical example is presented.

A Study on Construction of an Optimal Fossil Fuel Mix: A Portfolio-Based Approach (평균-분산 모형을 이용한 화석에너지원 소비조합 구성에 관한 연구)

  • Cha, Kyungsoo
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.335-356
    • /
    • 2011
  • In this paper, we attempted to suggest a way to evaluate appropriateness and efficiency for the energy consumption structure. For this, based on Markowitz (1952)' mean-variance portfolio model, we constructed an optimal fossil fuel mix. In constructing the optimal mix, we first defined returns on fossil fuels (oil, coal and natural gas) as TOE (Ton of Oil Equivalent) per $1. Then, by using the dynamic latent common factor model, we decomposed the growth rates of the returns on each fossil fuel into two parts : the common part and the idiosyncratic part. Finally, based on the results from the dynamic latent common factor model, we constructed the optimal fossil fuel mix implied by the mean-variance portfolio model. Our results indicate that for the fossil fuel mix to be on the efficient frontier, it is crucial to reduce oil consumption as low as possible. Moreover, our results imply that it is more efficient to increase natural gas consumption rather than coal consumption in reducing oil consumption. These results are in line with the strategies for the future energy consumption structure pursued by Korea and indicate that reduction in oil use can improve overall efficiency in energy consumption.

  • PDF

Determination of the Optimal Process Mean and Upper Limit with considering the rpm(rate per minute) (rpm 변화를 고려한 최적의 공정 평균과 상한 규격의 결정)

  • 송우복;안광일;김성집
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.61-73
    • /
    • 1998
  • The quality control literature contains a substantial number of articles concerned with how to optimally choose control limits in order to minimize production cost. The purpose of the this study is to determine the economic setting for the process mean of an industrial process. In this study it is assumed that the lower control limit is set by government regulations and the u, pp.r limit and process mean are chosen based on economic considerations. Much research has been conducted on this problem under the condition of the fixed rpm(rate per minute). However a variance can be increased in proportion to the level of rpm and the increase of the variance can change the optimal process mean. Therefore, it is desirable to determine both the process mean and the level of rpm simultaneously. In this paper, a mathematical model is presented which considers the u, pp.r limit and the rpm as variables.

  • PDF

Simultaneous modeling of mean and variance in small area estimation

  • Kim, Myungjin;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1423-1431
    • /
    • 2016
  • When the sample size in a certain domain is too small to produce adequate information, small area model with random effects is usually used. Also, if we do not consider an inherent pattern which data possess, it considerably affects inference. In this paper, we mainly focus on modeling to handle increased variation of the Current Population Survey (CPS) median income as the Internal Revenue Service (IRS) mean income increases. In a hierarchical Bayesian framework, most estimations are carried out through the Gibbs sampler while the grid method is used to generate parameters from non-standard form. Numerical study indicates that the performance of proposed model is better than that of CPS method in terms of four comparison measurements.

Selection of Survival Models for Technological Development (기술발전에 따른 생존모형 선정)

  • Oh, H.S.;Kim, C.S.;Rhee, H.K.;Yim, D.S.;Cho, J.H.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.184-191
    • /
    • 2009
  • In a technological driven environment, a depreciation estimate which is based on traditional life analysis results in a decelerated rate of capital recovery. This time pattern of technological growths models needs to be incorporated into life analysis framework especially in those industries experiencing fast technological changes. The approximation technique for calculating the variance can be applied to the six growth models that were selected by the degree of skewness and the transformation of the functions. For the Pearl growth model, the Gompertz growth model, and the Weibull growth model, the errors have zero mean and a constant variance over time. However, transformed models like the linearized Fisher-Pry model, the linearized Gompertz growth model, and the linearized Weibull growth model have increasing variance from zero to that point at which inflection occurs. It can be recommended that if the variance of error over time is increasing, then a transformation of observed data is appropriate.

Mean-Variance-Validation Technique for Sequential Kriging Metamodels (순차적 크리깅모델의 평균-분산 정확도 검증기법)

  • Lee, Tae-Hee;Kim, Ho-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.541-547
    • /
    • 2010
  • The rigorous validation of the accuracy of metamodels is an important topic in research on metamodel techniques. Although a leave-k-out cross-validation technique involves a considerably high computational cost, it cannot be used to measure the fidelity of metamodels. Recently, the mean$_0$ validation technique has been proposed to quantitatively determine the accuracy of metamodels. However, the use of mean$_0$ validation criterion may lead to premature termination of a sampling process even if the kriging model is inaccurate. In this study, we propose a new validation technique based on the mean and variance of the response evaluated when sequential sampling method, such as maximum entropy sampling, is used. The proposed validation technique is more efficient and accurate than the leave-k-out cross-validation technique, because instead of performing numerical integration, the kriging model is explicitly integrated to accurately evaluate the mean and variance of the response evaluated. The error in the proposed validation technique resembles a root mean squared error, thus it can be used to determine a stop criterion for sequential sampling of metamodels.