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Abstract

When the sample size in a certain domain is too small to produce adequate in-
formation, small area model with random effects is usually used. Also, if we do not
consider an inherent pattern which data possess, it considerably affects inference. In
this paper, we mainly focus on modeling to handle increased variation of the Current
Population Survey (CPS) median income as the Internal Revenue Service (IRS) mean
income increases. In a hierarchical Bayesian framework, most estimations are carried
out through the Gibbs sampler while the grid method is used to generate parameters
from non-standard form. Numerical study indicates that the performance of proposed
model is better than that of CPS method in terms of four comparison measurements.
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1. Introduction

The size of sample influences the amount of information. Sometimes, the domain-specific
sample size may be too small to guarantee relevant information. In such a case, small area
models which include small area random effects are usually considered. The available aux-
iliary information and the small area effects are connected to the small area parameters in
additive way. In this way, the usual small area models produce shrinkage estimators that
“borrow strength” from other areas. For detail, one can refer to Ghosh and Rao (1994), and
Ghosh, Nangia and Kim (1996) and Rao (2003).

In this paper, we adjust the inference strategy to account for increased variation of the
Current Population Survey (CPS) median income in data from the Annual Social and Eco-
nomic Supplement (ASEC) for the period 1995-1999. To explain this point, we consider
simultaneous small area modeling both mean and variance. Model fitting and parameter
estimations are carried out in a hierarchical Bayesian framework. A hierarchical Bayesian
model for median household income of four-person families has recently been considered in
Bhadra, Ghosh and Kim (2012), Goo and Kim (2013) and Lee and Kim (2013). To overcome
calculation problems, we perform the Gibbs sampler and the grid method to generate some
parameters from non-standard posterior distributions. Also, we use comparison measure-
ments to evaluate the performance of proposed model.
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2. Hierarchical Bayesian inference

A direct estimation is derived using only data from one source for the state and time
period. There are several direct estimators such as the Horvitz-Thompson (H-T) estimator,
generalised regression estimator, modified direct estimator or survey regression estimator
etc. The Current Population Survey (CPS) provides direct estimates for median household
income of four-person families. We will use the available CPS direct estimates to compare
to the estimates of proposed model.

Let Y;; and z;; denote the CPS median household income and the IRS mean income
recorded for the i state at the j** time. Let X = (1, zy,--- ,wfj)'. We consider the
small area model which consists of two parts. The first part of our model can be generally
expressed as

Yij = Bo + Brwij + -+ Bpxy; + bi + ey
= X;],B + bz + Gij
= Hij + €44, (2.1)

where 0;; = X ;j,@ + b; is our target of interest. Here, b; is state-specific random effect and
e;j is white noise errors for the i*" state at the j* time (i = 1,--- ,m;j = 1,--- ,t). We
assume b; ~ N (O,ag) and e;; ~ N (0, Ufj/nij) where n;; is the sample size corresponding
to the i*" state at the j*" time.

To allow the covariates to influence the within-state variation, we consider the following
log-linear representation to characterize the error variance,

log(o?j) = ngT. (2.2)

The exponential function ensures a positive multiplicative factor for any vector 7. Here,
T = (79,71, ...,7p) . In order to allow the within-state variance to vary across states, we can
extend the above formulation as log(afj) = X;T 4 v; where the state-specific effects v; can
be assumed to have a normal distribution with mean 0 and variance o2. The skewed, non-
negative nature of the log-normal distribution makes it a reasonable choice for representing
variances as has been previous done in diverse research areas. Thus, the second part of our
model can be generally expressed as

log(0;) = 70 + Tawi + - - + Tpal; + v;
= ng‘rJrvl-, (2.3)

where 7 = (79,71, -+ ,7p)". In this setup, we perform the hierarchical Bayesian analysis.

Let Y; = (Yi1, -+ ,Y;:) be the response and X; = (X1, -+, X )" be the covariate for
the i'" state at the j* time (i = 1,---,m ; j = 1,---,t). Let Q; = (0,,8,7,02,02,02%)
be the parameter space corresponding to the it state where 8; = (01, ,0:)" and o’z2 =
(02,---,02%). The full parameter space is & = £y x - - - x€2,,,. For the i*" state, the likelihood
function can be written as

L(Y;, X;|Q;) x L(Y |0, a?)L(GiW, bi)L(log(a§)|T,vi)
t
o [ [ L(Yi;1035, 07 L(03| X, 8, 03) L(log(o}))| X}, 7, 07). (2.4)

Jj=1
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Here L(Z|u,0?) denotes a normal density with data Z, mean u and variance o2.

To accomplish the Bayesian specification of our model, we need to assign prior distributions
to the unknown parameters. We assume noninformative improper uniform prior for the poly-
nomial coefficients 3 and 7. Also, we suppose proper conjugate gamma priors on the inverse
of the variance components (02, 02). The prior distributions are assumed to be mutually in-
dependent. We choose small values (10~3) for the gamma shape and rate parameters to make
the priors diffuse in nature so that inference is mainly controlled by the data distribution.
Thus, we have the following priors: 8 ~ uniform(RPTY), T ~ uniform(RPTY), (02)~! ~
Gamma(a,b) and (62)~! ~ Gammal(c,d).

The full posterior of the parameters given the data is obtained by combining the likelihood
and the prior distribution as follows

p(QY, X) o [[ LY, X:|Q:)7(B) ()7 (077 (7). (2.5)

i=1

Our target of inference is 0;;,i = 1,--- ,m;j = 1,--- , ¢, the true median household income
of all the states. Because the marginal posterior distribution of §;; is analytically intractable,
high dimensional integration needs to be carried out in a theoretical framework. However,
this task can be easily accomplished in an MCMC framework by using Gibbs sampler to
sample from the full conditionals of 6;; and other relevant parameters. To diminish the
effects of the starting distributions, the first d iterations of chain are discarded and posterior
summaries are calculated based on the rest of the d iterates.

Since we use improper prior to accomplish the Bayesian specification of our model, we
need to check posterior propriety for our model. Posterior propriety holds in our model and
the proof is outlined below.

Theorem 2.1 Posterior propriety holds in our model.

Proof: Integrating first w.r.t. 3, we have

Ig o< exp ——ZGG + 59 (ZBX) (ZX;X1>_ (ZX291> (o3)'/?
mexp{; {S'U-T(T'T)"'T") S}} 212, (2.6)

Let Q = —3{S'(I -T(T"T)~'T")S}. Since (I — T(T'T)~'T") is idempotent, S’[I
T(T'T)~'T"]S is non-negative, implying exp(Q) < 1. Next, we consider integration w.r.t.

2
[

tm— b
1,2 = /(Ul%)_( 2 1+a)_1easp{—2}da§ <M1 (2.7)
Ty

where M1 is some positive constant. Let n, = (logo?,logo?, - -+ ,logo?;). Integrating first
w.r.t. 7, we have
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-1
1 1
I+ < exp 557 Zném t 552 (Z U;Xz) (Z X;Xz) (Z Xém) CHRS
v v A i A
x exp{; {K'(I - B(B'B)lB’)K}} (o2)1/2, (2.8)

Let W = —3 {K'(I — B(B'B)"'B')K}. Since (I — B(B'B)"'B’) is idempotent, K'[I —
B(B'B)~'B'|K is non-negative, implying exp(W) < 1. Again, we consider itegration w.r.t.

2
0.

Iz = /(gg)(tm2_l+c)1exp{oc_l2}dag < M2 (2.9)

v

where M2 is some positive constant. Since all the components of the integrand have proper
distributions, the above integral is finite. O

3. Numerical studies

We use income data from ASEC for the period 1995-1999 to estimate median household
income for all the U.S states and District of Columbia for 1999. Our response is the CPS
median household income while the covariate is the IRS mean household income for the U.S
states for 1995-1999. Figure 3.1 demonstrates the CPS median income against IRS mean
income for all the states for the period 1995-1999. Clearly, heteroscedasticity seems to be
an issue with regard to Figure 3.1. Variation of CPS median income seems to increase with
IRS mean income. To clarify this point, we plot log of the state-specific variance of the CPS
median income values against state-specific means of the IRS mean income values. Note
that correlation coefficients between IRS mean and log of variance of CPS is 0.4047. There
is positive correlation between log of within-state variance of CPS income and state-specific
IRS mean income. Based on the above information, we have restricted ourselves to a linear
coefficient in mean and variance structure.
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Figure 3.1 Scatter plot
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The general structure of our model would remain the same as Section 2.1. Based on the
observation, we only consider linear coefficient (p=1) in mean and variance structure and
formulate the following small area model for our data:

Yij = xij B+ bi + ey (3.1)
and
log(o;) = wijT + v; (3.2)

where Yj; is the CPS median income while z;; is the IRS mean income. We assume b; ~
N (O, 05), v; ~ N (07 Jg) and e;; ~ N (07 ij/nij) where n;; is the sample size corresponding
to the i*" state at the j*" time.

We can infer all parameters by using Gibbs sampler to generate from the full conditional
relevant parameters except for 02-2]-. To perform Gibbs sampling, we need to calculate the full
conditional distributions. The full conditional distributions of 6,;, 8, 7, o2, o2 and O‘% are
given by

200 V.. A2 2 2
2 2 2 UanJKJ"_xUBUij Jijgb
eijl}/ij;xij7ﬁ7abaavao-ijNN

PR N
nijoy, + 0 nijoy, + 0
-1

1
/8|9ij7xij7 0'13 ~ N Z inﬂij Z ZZL‘ZZJ 5 Z foj 0‘2 (34)
J i g (]

%

-1 —1
T xij,ofj,ag ~ N ZZmijlog(afj) ZZJ:ZZJ , Zfoj o? (3.5)
i i P
t 2, (05 — 34;8)
(05)_1|9ij7x¢j,3~6'<a+;n,2 25 2j i) —i—b) (3.6)
3" (log(o?) — a4;7)?
(012;)71|5Uija7, O'in ~G <c+ %t, 2 Z]( 9(2”) i7) +d> (3.7)

_3 (Y. —0:.:)? l _2'_1,, 2
0'1-2]'|0th67“5 ~ (O'izj) : exp <M> exp <( 09(0”) z JT) ) (3.8)

2 2
203 202

Since the full conditionals of 07, are non-standard forms of distribution, we cannot use the
Gibbs sampler to generate Ufj. Thus, an alternative approach to generate afj is required.
The grid method is known as one of approaches to sample from an unknown form. The grid

method to generate o’?j can be described by the following steps.
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Grid method:

o2,

ij
5.
1+aij

Step 1. Fori =1, ,m,j =1, -+ ,t, set n;; =

Step 2. Divide full interval (0,1) into 100 subintervals.
Step 3. Calculate mid-points for each intervals (M, k =1,---,100).

Step 4. Input the mid-points to the posterior density of 7;; (ax,k = 1,---,100).

k
Step 5. Calculate b, = #,k =1,---,100.

m=1 "M

Step 6. Generate u ~ U(0, 1) and find k* such that u € [bg~, b»11].
Step 7. Generate s from U(Mys, Myx11).
Then, s/(1-s) is sample from 7(a7;|others).

In order to evaluate the performance of our estimates, we need criteria for comparison.
Once every 10 years, the U.S. Bureau of the Census has conducted decennial census of
population. We can use the census figures for 1999 to compare to the corresponding estimates
of median household incomes for 1999. Thus, the decennial census values are regarded as
“gold standard” against which all other estimates are compared using the following four
criteria:

e Average Relative Bias (ARB) = (51)7! Zfil leizeil

Ci

e Average Squared Relative Bias (ASRB) = (51)~! %! lesmeil®

=1
e Average Absolute Bias (AAB) = (51)7! Zfil le; — eil
e Average Squared Deviation (ASD) = (51)~! Zfil(cl —e;)?

Here, ¢; and e; respectively denote the census and model based estimates for the i*" state
(i=1,---,51).

Convergence of the algorithm refers to whether the algorithm has reached its equilibrium
distribution. Hence, monitoring the convergence of the algorithm is essential for producing
results from the posterior distribution of interest. Convergence of the Gibbs sampler with
grid method was monitored by visually checking the dynamic trace plots and the acf plots.
We need to check the autocorrelations of the generated values since the MCMC generated
sample may not be independent. Figure 3.2 plots the acf with thin interval for (a) 3, (b)
7, (¢) of and (d) o2. It indicates that the generated samples are not independent. So,
we can produce independent samples by keeping the first generated values in every batch
of 5 iterations. The trace plots for observations after discarding a burning period of 1000
iterations are provided in Figure 3.3. Generated observations of Figure 3.3 are convincing
in terms of convergence, with all generated values within a parallel zone and no obvious
tendencies or periodicities. From now, we will use these finally generated observations to
estimate parameters for our model.
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Figure 3.3 Trace plots with thin interval for (a) 3, (b) 7, (c) 02 and (d) o2

Table 3.1 reports parameter estimates of small area model with variance structure (model
1). As mentioned in Section 3.1, it is of interest to note that § and 7 are significant for our
model. Furthermore, it is seen that 7 demonstrates positive correlation between log of CPS

income and IRS mean income.

Table 3.1 Parameter estimates of small area model with variance structure.

Parameter Mean Median 90% CI
B 0.8850 0.8854 (0.8723, 0.8966)
T 0.7578 0.7269 (0.0510, 1.5630)
o? 0.0010 0.0010 (0.0008, 0.0013)
O’g 3.6470 3.5854 (2.7532, 4.7687)
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Parameter estimates in small area model without variance structure (model 2) are given
in Table 3.2. In this table, it is seen that there is little difference in the estimates.

Table 3.2 Parameter estimates of small area model without variance structure.

Parameter Mean Median 90% CI
B 0.8820 0.8820 (0.8707, 0.8930)
Jg 0.00007 0.00007 (0.00005, 0.0009)

Table 3.3 shows the comparison measurements for the CPS estimates and the small area
model estimates while Table 3.4 depicts the percentage improvement of the small area model
estimates over the CPS estimates. It is clear that the comparison measures for the small
area model with variance structure are lower than those corresponding to the CPS estimates
as well as those of model 2.

Table 3.3 Comparison measurements

Estimate ARB ASRB AAB ASD
CPS 0.0415 0.0027 1753.33 5,300,023

Model 1 0.0332 0.0022 1430.86 4,610,690

Model 2 0.0354 0.0027 1528.43 5,890,131

Table 3.4 Percentage improvements of small area model with variance structure

Estimate ARB ASRB AAB ASD
Model 1 20.00% 18.52% 18.39% 13.01%

4. Concluding remarks

In this paper, we have obviously seen that the IRS mean income has positive correlation
not only with CPS median income but also with log of the state-specific variance of the CPS
median income. Considering this point, we have proposed the small area model including
variance structure part to explain the inherent patterns. This plays an important role in
handling heterogeneous variance, which yields adequate small area estimations. It is seen
that estimations from the proposed model is slightly better than CPS method in terms of four
criteria which we have mentioned. The proposed model including variance structure makes
some improvements by capturing the underlying pattern in data. Thus, when overdispersion
is present in small area estimation, this approach could be an alternative to overdispersed
mean modeling. Also, we can extend our model by allowing two state-specific random effects
in the mean and variance of a state to be correlated to account for the association with each
other.
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