• 제목/요약/키워드: maximum likelihood estimate

검색결과 374건 처리시간 0.024초

Maximum Penalized Likelihood Estimate in a Sobolev Space

  • Park, Young J.;Lee, Young H.
    • Journal of the Korean Statistical Society
    • /
    • 제26권1호
    • /
    • pp.23-30
    • /
    • 1997
  • We show that the Maximum Penalized Likelihood Estimate uniquely exits in a Sobolve spece which consists of bivariate density functions. The Maximum Penalized Likehood Estimate is represented as the square of the sum of the solutions of the Modified Helmholtz's equation on the compact subset of R$^{2}$.

  • PDF

Comparative analysis of Bayesian and maximum likelihood estimators in change point problems with Poisson process

  • Kitabo, Cheru Atsmegiorgis;Kim, Jong Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권1호
    • /
    • pp.261-269
    • /
    • 2015
  • Nowadays the application of change point analysis has been indispensable in a wide range of areas such as quality control, finance, environmetrics, medicine, geographics, and engineering. Identification of times where process changes would help minimize the consequences that might happen afterwards. The main objective of this paper is to compare the change-point detection capabilities of Bayesian estimate and maximum likelihood estimate. We applied Bayesian and maximum likelihood techniques to formulate change points having a step change and multiple number of change points in a Poisson rate. After a signal from c-chart and Poisson cumulative sum control charts have been detected, Monte Carlo simulation has been applied to investigate the performance of Bayesian and maximum likelihood estimation. Change point detection capacities of Bayesian and maximum likelihood estimation techniques have been investigated through simulation. It has been found that the Bayesian estimates outperforms standard control charts well specially when there exists a small to medium size of step change. Moreover, it performs convincingly well in comparison with the maximum like-lihood estimator and remains good choice specially in confidence interval statistical inference.

A correction of SE from penalized partial likelihood in frailty models

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.895-903
    • /
    • 2009
  • The penalized partial likelihood based on restricted maximum likelihood method has been widely used for the inference of frailty models. However, the standard-error estimate for frailty parameter estimator can be downwardly biased. In this paper we show that such underestimation can be corrected by using hierarchical likelihood. In particular, the hierarchical likelihood gives a statistically efficient procedure for various random-effect models including frailty models. The proposed method is illustrated via a numerical example and simulation study. The simulation results demonstrate that the corrected standard-error estimate largely improves such bias.

  • PDF

Likelihood ratio in estimating Chi-square parameter

  • Rahman, Mezbahur
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권3호
    • /
    • pp.587-592
    • /
    • 2009
  • The most frequent use of the chi-square distribution is in the area of goodness-of-t of a distribution. The likelihood ratio test is a commonly used test statistic as the maximum likelihood estimate in statistical inferences. The recently revised versions of the likelihood ratio test statistics are used in estimating the parameter in the chi-square distribution. The estimates are compared with the commonly used method of moments and the maximum likelihood estimate.

  • PDF

Restricted maximum likelihood estimation of a censored random effects panel regression model

  • Lee, Minah;Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권4호
    • /
    • pp.371-383
    • /
    • 2019
  • Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.

A Note on Estimating Parameters in The Two-Parameter Weibull Distribution

  • Rahman, Mezbahur;Pearson, Larry M.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.1091-1102
    • /
    • 2003
  • The Weibull variate is commonly used as a lifetime distribution in reliability applications. Estimation of parameters is revisited in the two-parameter Weibull distribution. The method of product spacings, the method of quantile estimates and the method of least squares are applied to this distribution. A comparative study between a simple minded estimate, the maximum likelihood estimate, the product spacings estimate, the quantile estimate, the least squares estimate, and the adjusted least squares estimate is presented.

  • PDF

Parameters Estimators for the Generalized Exponential Distribution

  • Abuammoh, A.;Sarhan, A.M.
    • International Journal of Reliability and Applications
    • /
    • 제8권1호
    • /
    • pp.17-25
    • /
    • 2007
  • Maximum likelihood method is utilized to estimate the two parameters of generalized exponential distribution based on grouped and censored data. This method does not give closed form for the estimates, thus numerical procedure is used. Reliability measures for the generalized exponential distribution are calculated. Testing the goodness of fit for the exponential distribution against the generalized exponential distribution is discussed. Relevant reliability measures of the generalized exponential distributions are also evaluated. A set of real data is employed to illustrate the results given in this paper.

  • PDF

Likelihood-Based Inference on Genetic Variance Component with a Hierarchical Poisson Generalized Linear Mixed Model

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권8호
    • /
    • pp.1035-1039
    • /
    • 2000
  • This study developed a Poisson generalized linear mixed model and a procedure to estimate genetic parameters for count traits. The method derived from a frequentist perspective was based on hierarchical likelihood, and the maximum adjusted profile hierarchical likelihood was employed to estimate dispersion parameters of genetic random effects. Current approach is a generalization of Henderson's method to non-normal data, and was applied to simulated data. Underestimation was observed in the genetic variance component estimates for the data simulated with large heritability by using the Poisson generalized linear mixed model and the corresponding maximum adjusted profile hierarchical likelihood. However, the current method fitted the data generated with small heritability better than those generated with large heritability.

CONSISTENCY AND ASYMPTOTIC NORMALITY OF A MODIFIED LIKELIHOOD APPROACH CONTINUAL REASSESSMENT METHOD

  • Kang, Seung-Ho
    • Journal of the Korean Statistical Society
    • /
    • 제32권1호
    • /
    • pp.33-46
    • /
    • 2003
  • The continual reassessment method (CRM) provides a Bayesian estimation of the maximum tolerated dose (MTD) in phase I clinical trials. The CRM has been proposed as an alternative design of the standard design. The CRM has been modified to improve practical feasibility and, recently, the likelihood approach CRM has been proposed. In this paper we investigate the consistency and asymptotic normality of the modified likelihood approach CRM in which the maximum likelihood estimate is used instead of the posterior mean. Small-sample properties of the consistency is examined using complete enumeration. Both the asymptotic results and their small-sample properties show that the modified CRML outperforms the standard design.

Likelihood ratio in estimating gamma distribution parameters

  • Rahman, Mezbahur;Muraduzzaman, S. M.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.345-354
    • /
    • 2010
  • The Gamma Distribution is widely used in Engineering and Industrial applications. Estimation of parameters is revisited in the two-parameter Gamma distribution. The parameters are estimated by minimizing the likelihood ratios. A comparative study between the method of moments, the maximum likelihood method, the method of product spacings, and minimization of three different likelihood ratios is performed using simulation. For the scale parameter, the maximum likelihood estimate performs better and for the shape parameter, the product spacings estimate performs better. Among the three likelihood ratio statistics considered, the Anderson-Darling statistic has inferior performance compared to the Cramer-von-Misses statistic and the Kolmogorov-Smirnov statistic.