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Abstract

The Weibull variate is commonly used as a lifetime distribution in 
reliability applications. Estimation of parameters is revisited in the 
two-parameterWeibull distribution. The method of product spacings, the 
method of quantile estimates and the method of least squares are applied 
to this distribution. A comparative study between a simple minded 
estimate, the maximum likelihood estimate, the product spacings estimate, 
the quantile estimate, the least squares estimate, and the adjusted least 
squares estimate is presented.
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1. Introduction

The random variable X has a Weibull distribution with two parameters  and η  

if it has a probability density function of the form:

f (x ) =  
η






x
η

− 1

e
− 





x
η  ;   >  0 , η >  0                    (1)
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The distribution function of the Weibull distribution (1) can be written as

F (x ) =  1 − e
− 





x
η  ;   >  0 , η >  0                     (2)

The random variables X1 : n ,  X2 : n ,   ,  Xn : n   are defined as an ordered random 

sample from the Weibull distribution (1).

In the literature, estimation of parameters in the Weibull distribution is 

discussed extensively. Readers are referred to the following references: 

Engelhardt(1975), Harter (1965), Harter and Moore (1965), and Stone (1977). In this 

paper, three new methods of parameter estimation are introduced. The method of 

product spacings, the method of quantile estimates and the method of adjusted 

least squares. These methods are compared to various existing methods.

In the following section (Section 2) different estimation procedures are presented, 

such as, a method labeled 'the simple minded estimate' (SME), the maximum 

likelihood estimation method (MLE), the method of maximum product spacings 

(MPS), the method of quantile estimation (QE), the least squares method(LSE), 

and the adjusted least squares method (ALS) are discussed. In Section 3, a 

comparison study is conducted using simulation. In Section 4, a concluding 

summary is presented. In Section 5, a brief acknowledgement is added.

2. Estimation Procedures

2.1. Simple Minded Estimates (SME)

By investigating (2), it can be easily seen that P (W ≤  η ) =  1 − e − 1 =  0.6321 , 

for every . Hence, the 63.21th percentile can be used as an estimate for η, say 

ηŜ . And, since  is the power parameter, smaller values are preferred. Let us 

consider the minimum of the sample X1 : n  as  ̂S , the simple minded estimate for 

. 

2.2. Obtaining the Maximum Likelihood Estimates (MLE)

If X1 , X2 , , Xn  are independent random variables each having the probability 

density function (1), then the maximum likelihood estimators of  and η  are the 

solutions of the following likelihood equations:
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and

η̂ L =  
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ˆ L

i

n

1/ˆ L

.                          (4)

The solutions can easily be obtained using the Newtom-Raphson method with 

ŝ  and η̂s  as the startion values.

2.3. Applying the Method of Product Spacings (MPS)

The method of product spacings (MPS) was concurrently introduced by Cheng

and Amin (1983) and Ranneby (1984). Let

Di =  
xi− 1

xi

f (x ; θ )dx ,   i = 1 ,  2,   ,  n + 1 ,

where x0  is the lower limit and xn + 1  is the upper limit of the domain of the 

density function f (x ; θ ) , and θ  can be vector-valued. Clearly, the spacings sum to 

unity, ΣDi =  1. The MPS method is, quite simply, to choose θ  to maximize the 

geometric mean of the spacings,

G =  






Π
i = 1

n + 1

Di

1
n + 1

or, equivalently, its logarithm

H =  ln G.

MPS estimation gives consistent estimators under much more general conditions 

than MLEs. MPS estimators are asymptotically normal and are asymptotically as 

efficient as MLEs when these exist. For detailed goodness properties of MPS 

estimators, readers are referred to Cheng and Amin (1983), Ranneby (1984), Cheng 

and Iles (1987), Shah and Gokhale (1993), and the references therein.

Using the density function (1) and the cdf (2), H can be written as follows:

H =  
1

n + 1
 ln 







1 − e

−








x1 : n

η + Σ
i = 1

n − 1

 ln 






e

−








xi : n

η
 

− e
−









xi + 1 : n

η  −  








Xn : n

η
.    (5)

By maximizing (5) for different values of  and η, the MPS estimates can be 
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obtained as  ̂P  and η̂ P. The Newton-Raphson method can be used in solving the 

two differential equations. The equations are not displayed here because they are 

tedious. The simple minded estimates (SME) are used as the starting values.

2.4. Finding the Quantile Estimates (QE)

Methods of estimation which are based on using the quantiles of the 

corresponding distributions are denoted as Quantile Estimates (QE). Quandt (1966) 

found that the performance of quantile estimates were not markedly inferior to 

maximum likelihood estimates. On occassions they might be preferable because of 

their resistance to outliers. Thomas (1976) cast doubts on such observations. 

Recently, Schmid (1997) considered a variation of percentile estimators known as 

Elemental Estimators for the three-parameter weibull distribution and Castillo and 

Hadi (1995) considered quantiles of continuous random variables in estimating their 

parameters. Readers are referred to these two references and the references therein 

for historical background and for other details. The quantile estimate (QE) in 

general can be summarized as follows.

Let θ =  θ1,  θ2,   ,  θr  be the parameters to be estimated and X1 : n≤X2 : n≤
≤Xn : n  be the order statistics obtained from a random sample from F (x ; θ ) , 

where, for fixed θ, F (x ; θ )  is assumed to be strictly increasing on the interior of 

its support. Also, let I =  i1,  i2,   ,  ir  be a set of r  distinct indices, where 

ij  1,  2,   ,  n , and j =   1,  2,   ,  r . Then, one can write

F (xi : n ; θ )  pi : n ,   i  I

that is,

xi : n  F− 1 (pi : n ; θ),  i  I ,                        (6)

where, pi : n =  (i − 1 )/ (n+ b )  is an empirical distribution of F (xi : n ; θ )  or 

suitable plotting positions, and a and b are constants. The values of a and b are 

chosen(either theoretically or based on simulation) so that the resulting estimators 

have certain desirable properties (e.g., minimum root mean square error). Replacing 

the approximation by equality in (6), will result in a set of r  independent 

equations in r  unknowns, θ1, θ2, , θr. An elemental estimate of θ  can then be 

obtained by solving (6) for θ. Note that these elemental estimates are based on 

the percentile method.

The estimates obtained from (6) depend on r  observations. A subset of r  

observations is known as an elemental subset and the resultant estimate is known 

as an elemental estimate of θ. Thus, from a sample of size n, there are nCr  

elemental estimates. For large n  and r , the number of elemental subsets may be 



A Note on Estimating Parameters in The

Two-Parameter Weibull Distribution
1095

too large for the computation of all elemental estimates to be feasible. In such 

cases, instead of computing all possible elemental estimates, one may select a 

pre-specified number, N, of elemental subsets either systematically, based on some 

theoretical considerations, or at random. For each of these subsets, an elemental 

estimate of θ  is computed and this collection of estimates is denoted by θ̂ j1, θ̂ j2, 

, θ̂ jN , j =  1,  2,   r. These elemental estimates can then be combined, using 

some suitable (preferably robust) function, to obtain an overall final estimate of θ. 

A commonly used robust function is the median (MED), as shown below,

θ̂ =  median (θ̂ j1,  θ̂ j2 ,   ,  θ̂ jN ).

The estimates are unique even when the method of moments (MOM) and the 

MLE equations have multiple solutions or when the MOM and the MLE do not 

exist.

2.4.1. The Two-parameter Weibull Distribution

In the two-parameterWeibull distribution (1), using the cdf (2), the pth quantile 

is given by

q (p ;  ; η ) =  e
ln η +  1 ( ln (−  ln (1 − p)))

 ;  0 <  p <  1.

There are two parameters, so two equations are needed. Assuming I =  i, j  the 

equation (6) can be represented as

xi : n =  e
ln  η +  

1
(  ln   (−  ln    (1− pi : n)))

,

xj : n =  e
 ln η  +  

1
(   ln    (−  ln     (1−pj : n)))

,

where i < j. It follows that the quantile estimates of  and η  are given by 

 ̂ij =  

ln 






ln (1 − pi : n )

ln (1 − pj : n )

ln (xi : n ) −  ln (xj : n )

and

η̂ ij =  
Xi : n

(−  ln (1 − pi : n ))

1

ij

.

After choosing values for the pi : n , i =  1,  2,   ,  n, overall estimates for  and 

η  are obtained as

 ̂Q =  median (  ̂ij)
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and

η̂ Q =  median (η̂ ij),

where Q stands for quantile estimate. In absence of having the true quantiles, the 

empirical quantiles,

pi : n =  
i

n + 1

are suggested.

2.5. Using the Least Squares Method (LSM)

Algebraically, it can be easily seen from (2) that

ln  ln 
1

1 − F (Xi : n )
 =   ln Xi : n −   ln η .                    (7)

Using (7) and F (Xi : n ) =  
i

n + 1
, Al-Fawzan (2000) suggested least squares 

estimates of  and η  as

 ̂L =  
Σ
i = 1

n

(Vi − V)Wi

Σ
i = 1

n

(Vi − V)2

                           (8)

where Vi =  ln Xi : n , Wi =  ln ln 
1

1 −
i

n + 1

 and V =
1
nΣi = 1

n

 ln Xi : n  and

η̂ L =  e V̂−W/ˆ L ,                                  (9)

where W  =  
1
n Σi = 1

n

ln ln 
1

1 −
i

n + 1

.

2.6. The Adjusted Least Squares Estimates (ALS)

In (7), if we substitute F (Xi : n ) =  
i

n + 1
, then for a given sample size the left 

side is fixed, hence the equation (7) can be re-written as

ln Xi : n =  
1

ln ln 
1

1 − F (Xi : n )
+  ln η =  

1
ln ln 

1

1 −
1

n + 1

 +  ln η .       (10)

From this, the adjusted least square estimates of  and η  are given by
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 ̂A =  
Σ
 i = 1

n

(Wi − W )2

Σ
i = 1

n

(Wi − W )Vi

                          (11)

and

η̂ A =  e V−W/ˆ A                                  (12)

where Vi, Wi, V  and W  are defined in Section 6.

3. Simulation Results

In this section the SME, MLE, MPS, QE, LSE, and ALS estimates (as described 

in Sections 2 through 7) are compared using Monte Carlo simulation. The results 

depend on the sample size n and on the values of the parameters. Using  =  0.5, 

1.0, 2.0 and η =  0.5, 1.0, 2.0, 1000 (m) random samples of sizes n = 20, 50, 100  

from (1) are generated. For each estimate, the bias is computed as

BIAS ( ˆ) =  
1
m Σ

k = 1

m

 ̂k −  

and

BIAS(η̂) =  
1
m Σ

k = 1

m

η̂ k −  η.

The root mean-squared error (RMSE) is calculated using

RMSE(ˆ) =  

√
1
m Σ

k = 1

m

(  ̂k − )2

and

RMSE(η̂) =  

√
1
m Σ

k = 1

m

(ηk −  η)2̂.

The average absolute difference between the true and estimated distribution 

functions is defined as

Dabs =
1

mn Σj = 1

m

Σ
i = 1

n |F (xij ;  , η ) −  F (xij ; ̂ ,  η̂ )|.
The average of the maximum absolute difference between the true and 

estimated distribution function within each sample is defined as
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Dmax =  
1
m Σ

j = 1

m
max

i
 |F (xij ; ,  η ) −  F (xij ; ̂  ,  η̂ ) |.

The measures Dabs  and Dmax  are overall measures which are useful, especially 

in cases of vector-valued parameters. The results of the simulation are included in 

Table 1.

Table 1: Simulation Results

BIAS(η̂) RMSE(η̂) BIAS(ˆ) RMSE(ˆ) Dabs Dmax

η =  0.5      =  0.5

n = 20
SME -0.024024 0.162010 0.093632 0.362101 0.074604 0.123659

MLE 0.037713 0.114543 0.037520 0.259470 0.058445 0.095007

MPS -0.030877 0.093229 0.065505 0.275623 0.059303 0.092178

QE 0.000822 0.105409 0.063802 0.302417 0.061760 0.098793

ALS -0.027173 0.107205 0.065183 0.278748 0.061042 0.096721

LSE -0.050887 0.113362 0.106048 0.314732 0.063557 0.100535

n = 50
SME -0.031815 0.131082 0.041084 0.206989 0.054322 0.091703

MLE 0.013067 0.059600 0.016180 0.152725 0.034888 0.056296

MPS -0.021780 0.058514 0.027937 0.157295 0.035702 0.056934

QE -0.001809 0.063419 0.028048 0.176455 0.038140 0.061793

ALS -0.021435 0.071198 0.031587 0.162208 0.037753 0.061715

LSE -0.035907 0.077353 0.053775 0.177812 0.039429 0.064828

n = 100
SME -0.032997 0.113815 0.021172 0.140692 0.043129 0.073575

MLE 0.007276 0.041261 0.008366 0.105960 0.025070 0.040569

MPS -0.013325 0.041273 0.014491 0.107686 0.025433 0.040836

QE -0.001424 0.044210 0.015060 0.119348 0.027053 0.044071

ALS -0.015193 0.052176 0.019003 0.111465 0.027174 0.044787

LSE -0.024453 0.056690 0.032246 0.120105 0.028337 0.046932

η =  1.0     =  1.0

n = 20
SME -0.046659 0.324890 0.043934 0.301742 0.074684 0.123883

MLE 0.075426 0.229087 0.008626 0.240389 0.058445 0.095008

MPS -0.061754 0.186458 0.035088 0.246645 0.059303 0.092178

QE 0.001644 0.210818 0.028247 0.266655 0.061760 0.098793

ALS -0.054345 0.214410 0.034197 0.248942 0.061042 0.096721

LSE -0.101774 0.226725 0.070040 0.268354 0.063557 0.100535

n = 50
SME -0.063474 0.262230 0.022290 0.190649 0.054339 0.091749

MLE 0.026135 0.119200 0.005405 0.146810 0.034888 0.056296

MPS -0.043561 0.117028 0.016860 0.148854 0.035702 0.056934

QE -0.003619 0.126837 0.014269 0.166007 0.038140 0.061793

ALS -0.042870 0.142397 0.019944 0.152602 0.037753 0.061715

LSE -0.071814 0.154707 0.040568 0.162523 0.039429 0.064828
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Table 1: Simulation Results(Continued)

BIAS(η̂) RMSE(η̂) BIAS(ˆ) RMSE(ˆ) Dabs Dmax

n = 100

SME -0.065976 0.227631 0.012053 0.134252 0.043128 0.073573

MLE 0.014551 0.082522 0.002887 0.104679 0.025070 0.040569

MPS -0.026650 0.082546 0.008930 0.105459 0.025433 0.040836

QE -0.002849 0.088421 0.008322 0.116093 0.027053 0.044071

ALS -0.030386 0.104353 0.013138 0.108307 0.027174 0.044787

LSE -0.048906 0.113381 0.025714 0.114293 0.028337 0.046932

η =  2.0      =  2.0

n = 20

SME -0.091980 0.650662 0.021069 0.290175 0.074737 0.124002

MLE 0.150853 0.458173 -0.005677 0.239185 0.058445 0.095008

MPS -0.123508 0.372917 0.020625 0.240527 0.059303 0.092178

QE 0.003288 0.421636 0.011247 0.260748 0.061760 0.098793

ALS -0.108691 0.428820 0.019444 0.242913 0.061042 0.096721

LSE -0.203547 0.453449 0.053743 0.255333 0.063557 0.100535

n = 50

SME -0.126796 0.524525 0.013268 0.186857 0.054348 0.091771

MLE 0.052269 0.238399 0.000074 0.145848 0.034888 0.056296

MPS -0.087122 0.234056 0.011481 0.146657 0.035702 0.056934

QE -0.007238 0.253674 0.007580 0.163566 0.038140 0.061793

ALS -0.085741 0.284792 0.014325 0.149928 0.037753 0.061715

LSE -0.143627 0.309414 0.034383 0.157295 0.039429 0.064828

n = 100

SME -0.131932 0.455264 0.007604 0.132616 0.043128 0.073573

MLE 0.029102 0.165043 0.000143 0.104758 0.025070 0.040569

MPS -0.053300 0.165091 0.006171 0.105067 0.025433 0.040836

QE -0.005698 0.176841 0.004992 0.115414 0.027053 0.044071

ALS -0.060772 0.208706 0.010249 0.107493 0.027174 0.044787

LSE -0.097812 0.226761 0.022563 0.112277 0.028337 0.046932

4. Summary and Concluding Remarks

From Table 1, it is observed that all the estimates seem to be consistent as the 

RMSE decreases when the sample size increases. The estimates appear to be 

asymptotically unbiased as the BIAS decreases when the sample size increases 

except in case of SME in estimating η. Both Dabs  and Dmax  decrease uniformly 

when the sample size increases for all cases. For a clear comparison, the rankings 

(smallest to largest) are given in Table 2. Here we see the performances as in 

the order (superior to inf erior) of MLE, MPS, QE, ALS, LSE, and SME. It should 

also be noted that: for smaller samples MLE in estimating η  are poor; bias is the 

smallest in estimating η  in case of QE except for n = 100,  = 0.5, η  = 0.5; SME 
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is worst by far in comparison with other estimates; ALS is better throughout in 

comparison with LSE. This study is beneficial in light of its inclusion of newer 

estimation procedures. In conclusion, MLE should be used if large sample 

properties are desirable and ALS should be used if the sample size is small and 

for computational convenience.

Table 2: Simulation Rankings

BIAS(η̂) RMSE(η̂) BIAS(ˆ) RMSE(ˆ) Dabs Dmax

η =  0.5      =  0.5

n = 20
SME 2 6 5 6 6 6

MLE 5 5 1 1 1 2

MPS 4 1 4 2 2 1

QE 1 2 2 4 4 4

ALS 3 3 3 3 3 3

LSE 6 4 6 5 5 5

n = 50
SME 5 6 5 6 6 6

MLE 2 2 1 1 1 1

MPS 4 1 2 2 2 2

QE 1 3 3 4 4 4

ALS 3 4 4 3 3 3

LSE 6 5 6 5 5 5

n = 100
SME 6 6 5 6 6 6

MLE 1 1 1 1 1 1

MPS 3 2 2 2 2 2

QE 2 3 3 4 3 3

ALS 4 4 4 3 4 4

LSE 5 5 6 5 5 5

η =  1.0     =  1.0

n = 20
SME 2 6 5 6 6 6

MLE 5 5 1 1 1 2

MPS 4 1 4 2 2 1

QE 1 2 2 4 4 4

ALS 3 3 3 3 3 3

LSE 6 4 6 5 5 5

n = 50
SME 5 6 5 6 6 6

MLE 2 2 1 1 1 1

MPS 4 1 3 2 2 2

QE 1 3 2 5 4 3

ALS 3 4 4 3 3 4

LSE 6 5 6 4 5 5
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Table 2: Simulation Rankings(Continued)

BIAS(η̂) RMSE(η̂) BIAS(ˆ) RMSE(ˆ) Dabs Dmax

n = 100
SME 6 6 4 6 6 6

MLE 2 1 1 1 1 1

MPS 3 2 3 2 2 2

QE 1 3 2 5 3 3

ALS 4 4 5 3 4 4

LSE 5 5 6 4 5 5

η =  2.0      =  2.0

n = 20
SME 2 6 5 6 6 6

MLE 5 5 1 1 1 2

MPS 4 1 4 2 2 1

QE 1 2 2 5 4 4

ALS 3 3 3 3 3 3

LSE 6 4 6 4 5 5

n = 50
SME 5 6 4 6 6 6

MLE 2 2 1 1 1 1

MPS 4 1 3 2 2 2

QE 1 3 2 5 4 4

ALS 3 4 5 3 3 3

LSE 6 5 6 4 5 5

n = 100
SME 6 6 4 6 6 6

MLE 2 1 1 1 1 1

MPS 3 2 3 2 2 2

QE 1 3 2 5 3 3

ALS 4 4 5 3 4 4

LSE 5 5 6 4 5 5
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