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Abstract

The most frequent use of the chi-square distribution is in the area of goodness-of-fit
of a distribution. The likelihood ratio test is a commonly used test statistic as the
maximum likelihood estimate in statistical inferences. The recently revised versions of
the likelihood ratio test statistics are used in estimating the parameter in the chi-square
distribution. The estimates are compared with the commonly used method of moments
and the maximum likelihood estimate.

Keywords: Anderson-Darling test, Chi-square distribution, Cramer von-Mises, goodness-
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1. Introduction

The parameter estimation for the chi-square distribution is not as specifically discussed as
some other commonly used distributions, such as, exponential distribution, gamma distribu-
tion, etc. The reason may be that the chi-square distribution is a special case of the gamma
distribution. For the literature reviews for the parameters in a two-parameter gama distri-
butions, the readers are referred to Dang and Weerakkody (2000), Rahman et al. (2007),
and the references therein. In this paper, it is shown that the likelihood ratio test statistics
can also be successfully used in estimating papameters. As the likelihood ratio tests use
the distribution functions instead of the density function, might have advantages in certain
situations. For example, Cheng and Amin (1983) and Cheng and Iles (1987) showed that
the method of maximization of the product spacings using the distribution functions per-
form better than usual maximum likelihood estimates using the density functions when the
support of the distribution is dependent on a parameter.

2. Motivation

In constructing frequency distribution and histogram one of the very fundamental question
arises is that how many groups to be considered. Then in the very early stage of data analysis
the next important question is how data is distributed. The answer to the second question
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is often the aid of the chi-square goodness-of-fit test. But both the questions are related.
In literature, these two questions are discussed extensively. Here, the attempt is made to
investigate that how closely a chi-square distribution can be estimated. And to investigate
that whether there is any criteria which is more stable than the others which can later be
used in determining the optimum number of groups to capture the distributional properties
of a data set.

3. Likelihood-ratio tests

LetX be a continuous random variable with distribution function F (x), andX1, X2, . . . , Xn

be a random sample from F (x) with order statistics X(1), X(2), . . ., X(n). One may wish to
test the null hypothesis

H0 : F (x) = F0(x) for all x ∈ (−∞,∞),
H1 : F (x) 6= F0(x) for some x ∈ (−∞,∞),

where F0(x) is a hypothetical distribution function which is completely specified.

Zhang and Wu (2005) developed three different versions of likelihood-ratio tests and imple-
mented for the tests for normality along with some power comparisons. The tests are as
follows: Likelihood-ratio Kolmogorov-Smirnov statistic

LK = max
i∈{1,2,··· ,n}

{
(i− 0.5) log

i− 0.5
nF0(X(i))

+ (n− i+ 0.5) log
n− i+ 0.5

n[1− F0(X(i))]

}
,

Likelihood-ratio Cramer-von-Mises statistic

LC =
n∑
i=1

{
log

F0(X(i))−1 − 1
(n− 0.5)/(i− 0.75)− 1

}2

,

and Likelihood-ratio Anderson-Darling statistic

LA = −
n∑
i=1

{
logF0(X(i))
n− i+ 0.5

+
log[1− F0(X(i))]

i− 0.5

}
.

Zhang and Wu (2005) showed that these tests are more powerful than the traditional
Kolmogorov-Smirnov test, Cramer-von-Mises test, and Anderson-Darling test.

4. Estimation in Chi-square distribution

Let us considerX1, X2, . . . , Xn be a random sample from the chi-square distribution having
the probability density function

f(x; θ) =
1

2
θ
2 Γ
(
θ
2

)x θ−2
2 e−

x
2 ; x > 0, θ > 0,

where θ is the parameter, usually known as the degree of freedom.
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4.1. Method of moment estimate (MME)

The method of moment estimate for θ is the sample mean as the population mean is θ,
θ̂M = X̄. The mean of θ̂M is θ and the variance of θ̂M is 2θ/n.

4.2. Maximum likelihood estimate (MLE)

The maximum likelihood estimate for θ, θ̂L is found by maximizing the log-likelihood with
respect to θ,

lnL =
θ − 2

2

n∑
i=1

lnXi −
1
2

n∑
i=1

lnXi −
nθ

2
ln2− nlnΓ

(
θ

2

)
, (4.1)

where ‘ln’ stands for the natural logarithm. To maximize (4.1), a grid search in the range

of
{

max
(

0, θ̂M − 4
√

2θ̂M/n
)
, θ̂M + 4

√
2θ̂M/n

}
can be used. Here, usual maximization

involving the Di-gamma function avoided to keep consistency with the methods discussed
below. The grid search interval considered using 4 standard deviations to accomodate almost
all possibilities.

4.3. Likelihood-ratio Kolmogorov-Smirnov statistic (KSE)

The likelihood-ratio Kolmogorov-Smirnov statistic estimate for θ, θ̂K is found by mini-
mizing the Likelihood-ratio Kolmogorov-Smirnov statistic

LK = max
i∈{1,2,··· ,n}

{
(i− 0.5) log

i− 0.5
nF (X(i); θ)

+ (n− i+ 0.5) log
n− i+ 0.5

n[1− F (X(i); θ)]

}
, (4.2)

where
F (x; θ) =

∫ x

0

f(t; θ)dt =
∫ x

0

1

2
θ
2 Γ
(
θ
2

) t θ−2
2 e−

t
2 dt.

4.4. Likelihood-ratio Cramer-von-Mises statistic (CVE)

The likelihood-ratio Cramer-von-Mises statistic estimate for θ, θ̂C is found by minimizing
the likelihood-ratio Cramer-von-Mises statistic

LC =
n∑
i=1

{
log

F (X(i))−1 − 1
(n− 0.5)/(i− 0.75)− 1

}2

, (4.3)

where
F (x; θ) =

∫ x

0

f(t; θ)dt =
∫ x

0

1

2
θ
2 Γ
(
θ
2

) t θ−2
2 e−

t
2 dt.
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4.5. Likelihood-ratio Anderson-Darling statistic (ADE)

The likelihood-ratio Anderson-Darling statistic estimate for θ, θ̂A is found by minimizing
the likelihood-ratio Anderson-Darling statistic

LA = −
n∑
i=1

{
logF (X(i))
n− i+ 0.5

+
log[1− F (X(i))]

i− 0.5

}
, (4.4)

where
F (x; θ) =

∫ x

0

f(t; θ)dt =
∫ x

0

1

2
θ
2 Γ
(
θ
2

) t θ−2
2 e−

t
2 dt.

5. Simulation results

Ten thousand samples are generated for three different parameter settings θ =2, 5, and
10 and for three different sample sizes n = 10, 20, and 30. Means (MEAN), standard
deviations (SD), mean of the absolute biases (MAB), biases (BIAS), and mean squared
errors (MSE) are computed and displayed in Tables 5.1-5.2. The results are analyzed in
Section 7.

MATLAB software is used in all computations and the codes are readily available upon
request.

6. Application

To demonstrate how these estimates can be implemented for a real life data, the following
data in Table 6.1 represents failure times of machine parts from manufacturer A and are
taken from http : //v8doc.sas.com/sashtml/stat/chap29/sect44.htm is consedered: If we

assume that this data in Table 6.1 follows a Chi-square distribution, the estimates of the
parameter are θ̂M = 468.74, θ̂L = 481.63, θ̂K = 455.83, θ̂C = 455.83, and θ̂A = 455.83. This
data is considered only to show a life example where the estimation procedures mentioned
in the paper can be performed successfully.

7. Summary and concluding remarks

From Table 5.1-5.2, it is observed that all the estimates appear to be consistent and
asymptotically unbiased, i.e., as n increases the standard deviations decrease and the bi-
ases decrease. In all cases, θ̂M has the smallest biases, the highest standard deviations,
and highest mean square errors (except for θ = 10 and n = 20). In all cases, θ̂L has the
smallest standard deviations and the smallest mean square error (except for θ = 2 and
n = 10). For the other three estimates, in some instances, biases are smaller than θ̂L, the
standard deviations and the mean square errors are always smaller than θ̂M . Among the
three likelihood-ratio estimates, θ̂A performed better, often having lower biases, lower stan-
dard deviations, and lower mean square errors compared to the other two estimates. The

asymptotic properties are not established in tthis paper as there is no closed form estimators
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Table 5.1 Simulation results

θ̂M θ̂L θ̂K θ̂C θ̂A
θ = 2 n = 10

MEAN 1.9888 2.0800 2.0521 2.0732 2.0408
SD 0.6288 0.5114 0.5403 0.5160 0.5139
MAB 0.4998 0.4031 0.4266 0.4068 0.4051
BIAS -0.0112 0.0800 0.0521 0.0732 0.0408
MSE 0.3955 0.2679 0.2946 0.2716 0.2658

θ = 2 n = 20
MEAN 1.9944 2.0392 2.0276 2.0417 2.0232
SD 0.4451 0.3576 0.3843 0.3629 0.3611
MAB 0.3546 0.2821 0.3025 0.2862 0.2849
BIAS -0.0056 0.0392 0.0276 0.0417 0.0232
MSE 0.1981 0.1294 0.1484 0.1333 0.1310

θ = 2 n = 30
MEAN 1.9990 2.0316 2.0224 2.0341 2.0228
SD 0.3660 0.2912 0.3159 0.2961 0.2957
MAB 0.2912 0.2309 0.2501 0.2352 0.2343
BIAS -0.0010 0.0316 0.0224 0.0341 0.0228
MSE 0.1339 0.0858 0.1003 0.0889 0.0880

θ = 5 n = 10
MEAN 5.0122 5.1100 5.0789 5.1029 5.0650
SD 1.0155 0.9304 0.9689 0.9409 0.9371
MAB 0.8040 0.7340 0.7626 0.7420 0.7391
BIAS 0.0122 0.1100 0.0789 0.1029 0.0650
MSE 1.0314 0.8777 0.9451 0.8959 0.8824

θ = 5 n = 20
MEAN 4.9974 5.0476 5.0319 5.0516 5.0299
SD 0.7086 0.6427 0.6841 0.6543 0.6524
MAB 0.5618 0.5097 0.5419 0.5182 0.5165
BIAS 0.0122 0.1100 0.0789 0.1029 0.0650
MSE 0.5021 0.4154 0.4690 0.4307 0.4265

θ = 5 n = 30
MEAN 5.0083 5.0402 5.0308 5.0437 5.0288
SD 0.5808 0.5240 0.5667 0.5325 0.5333
MAB 0.4628 0.4180 0.4499 0.4248 0.4251
BIAS 0.0083 0.0402 0.0308 0.0437 0.0288
MSE 0.3374 0.2762 0.3221 0.2855 0.2852

Table 5.2 Simulation results continued

θ̂M θ̂L θ̂K θ̂C θ̂A
θ = 10 n = 10

MEAN 10.0080 10.1075 10.0772 10.0998 10.0618
SD 1.4172 1.3545 1.4042 1.3714 1.3624
MAB 1.1266 1.0779 1.1147 1.0901 1.0812
BIAS 0.0080 0.1075 0.0772 0.0998 0.0618
MSE 2.0085 1.8462 1.9777 1.8907 1.8598

θ = 10 n = 20
MEAN 10.0230 10.0677 10.0571 10.0719 10.0492
SD 0.9957 0.9495 1.0081 0.9682 0.9625
MAB 0.7929 0.7543 0.8005 0.7685 0.7636
BIAS 0.0230 0.0677 0.0571 0.0719 0.0492
MSE 0.9920 0.9062 1.0195 0.9425 0.9288

θ = 10 n = 30
MEAN 9.9993 10.0367 10.0290 10.0432 10.0283
SD 0.8199 0.7835 0.8323 0.7968 0.7950
MAB 0.6550 0.6268 0.6660 0.6374 0.6363
BIAS -0.0007 0.0367 0.0290 0.0432 0.0283
MSE 0.6722 0.6152 0.6935 0.6368 0.6328

in the proposed procedures. And the asymptotic properties for the maximum likelihood es-
timates and the method of product spacings are well established. In this paper, simulations
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Table 6.1 Failure times
620 470 260 89 388 242 103 100 39 460 284

1285 218 393 106 158 152 477 403 103 69 158
818 947 399 1274 32 12 134 660 548 381 203
871 193 531 317 85 1410 250 41 1101 32 421
32 343 376 1512 1792 47 95 76 515 72 1585

253 6 860 89 1055 537 101 385 176 11 565
164 16 1267 352 160 195 1279 356 751 500 803
560 151 24 689 1119 1733 2194 763 555 14 45
776 1

are used to establish the asymptotic behaviors of the estimates.
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