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Abstract

Nowadays the application of change point analysis has been indispensable in a wide
range of areas such as quality control, finance, environmetrics, medicine, geographics,
and engineering. Identification of times where process changes would help minimize
the consequences that might happen afterwards. The main objective of this paper is
to compare the change-point detection capabilities of Bayesian estimate and maxi-
mum likelihood estimate. We applied Bayesian and maximum likelihood techniques to
formulate change points having a step change and multiple number of change points
in a Poisson rate. After a signal from c-chart and Poisson cumulative sum control
charts have been detected, Monte Carlo simulation has been applied to investigate the
performance of Bayesian and maximum likelihood estimation. Change point detection
capacities of Bayesian and maximum likelihood estimation techniques have been inves-
tigated through simulation. It has been found that the Bayesian estimates outperforms
standard control charts well specially when there exists a small to medium size of step
change. Moreover, it performs convincingly well in comparison with the maximum like-
lihood estimator and remains good choice specially in confidence interval statistical
inference.

Keywords: Bayesian estimate, change point, control chart, maximum likelihood esti-
mate, Monte Carlo simulation.

1. Introduction

Originally change point models have been developed in connection with applications in
quality control, where a change from the in-control to the out-of-control state has to be de-
tected based on the available random observations. Various change point models have been
suggested for a broad spectrum of applications like quality control, reliability, econometrics
or medicine. In change point problems, a random process indexed by time is observed and
we want to investigate whether a change in the distribution of the random elements occurs.
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That means we are interested in determining whether the observed stochastic process is
homogeneous or not. Generally, in the discrete time case, let X7, Xo, ..., denote a sequence
of independent random variables, where the elements X, ..., Xy, have an identical distri-
bution function Fjy and Xg41, ..., are distributed according to F; and the change-point 6 is
unknown. Several statistical tests of the null hypothesis Fp is equal to F; against the alter-
native Fj is not equal to Fj for some 6 have been suggested. Majority change point problem
methodologies assume that the number of change points is known and has fixed value. Like
threshold models (Chen and Lee, 1995), the methods based on maximum likelihood estima-
tors considered by Hawkins (2001) and many others considered this situation. Other authors
have studied the one change point problem using a Bayesian approach (Menzefricke, 1981;
Hsu, 1984; Smith, 1975). The model that introduces more flexibility into the analysis of
change point problems is product partition model (PPM) developed by Hartigan (1990).
The product partition model (PPM) have been applied by Barry and Hartigan (1993) to
identify multiple change points in the case of normal means only. Loschi et al. (2003) add
some features on PPM that help to identify multiple changes in both means and variances
of normal data. Moreover, they proposed a Gibbs sampling scheme to compute the posterior
distributions of the random partition generated by using change points and the posterior
distributions of the number of change points (Kim and Seo, 2002; Lee and Lee, 2007)

A change point model in a Poisson process using a Bayesian framework have been dis-
cussed. We analyze and discuss the performance of the Bayesian change point model through
posterior estimates and probability based intervals.

Bayesian and maximum likelihood estimation methods are compared via a simulation
study. Performances based on goodness of fit of the estimation methods have been assessed
based on the output from R software using carefully checked simulated data.

Let a Poisson process X;,t = 1,..., T, be initially in-control with independent observations
coming from a Poisson distribution with a known rate \g. At an unknown point in time, 7,
the Poisson rate parameter changes from its in-control state of Ag to Ay, Ay = Ag+ 9, d # 0.
The Poisson process step change model can thus be parametrized as follows:
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where 0, t and T are the magnitude of the step change, the change time and the current time
respectively. The change from the in-control state may occur due to a non-constant change
type scenario which can be explained by a linear trend model Ay = A\g + (¢t — 7) for t>7. If
the magnitude of linear trend disturbance (slope) is positive, an increasing trend in which
A¢>Ng, while a negative 8 leads to a linear reduction of the Poisson rate and A;<)\q for
t=7+1,...T. The Poisson process linear trend change model can be modeled as follows:
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The Poisson process linear trend change model can be parameterized as follows. Each
observation consists of a count from a subgroup formed from the output of the process.
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During the formulation of subgroups i = 1,2, --- , 7 the process rate \; is equal to its known
in-control value \g. For subgroups ¢ = 7+ 1,--- ,T the process rate \; is equal to some
unknown rate A; = Ao + (¢ — 7) where T is the most recent subgroup sample. The model
assumes two unknowns in 7 and 3, representing the last subgroup taken from the in-control
process and the slope parameter of the linear trend, respectively. This model can be used to
derive a maximum likelihood estimator for the process change point.

2. Methodological approach

2.1. Bayesian estimation

Barry and Hartigan (1993) assume that the observations are independent N (u;,02), and
that the probability of a change point at a position ¢ is p, independently at each ¢. The prior
distribution of p;; (the mean of the block beginning at position ¢+ 1 and ending at position
j) is chosen as N (uo,02/(j — 1))

The algorithm uses a partition p = (Uy, Us, ..., Uy,,), where U; = 1 indicates a change point
at position ¢+ 1; Erdman and Emerson (2007) initialize U; to 0 for all ¢ < n, with U, = 1. In
each step of the Markov chain, at each position i, a value of Ui is drawn from the conditional
distribution of Ui given the data and the current partition. Following Barry and Hartigan,
Erdman and Emerson let b denote the number of blocks obtained if U; = 0, conditional
on Uj , for i # j. The transition probability, p, for the conditional probability of a change
point at the position i + 1, may be obtained from the simplified ratio presented in Barry
and Hartigan:

1—pi P(Ui =0|X Uj?j # 1)
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where Wy, By, W7 and B; are the within and between block sums of squares obtained when
U; = 0 and U; = 1 respectively, and X is the data. The tuning parameters v and A may
take values in [0, 1], chosen so that this method After each iteration, the posterior means
are updated conditional on the current partition. A direct implementation of the Barry and

Hartigan MCMC algorithm is numerically unstable for long sequences because the integrands
of
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either diverge or go to 0 for long sequences. Fortunately, these integrals can be simplified
as incomplete beta integrals. The odds of a change point at a particular position in the
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partition (given the data and the current partition) may be re-expressed as
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This expression consists of numerically stable terms, allowing application of the Barry and
Hartigan procedure to sequences of any length. The MCMC implementation of Barry and
Hartigan estimates the posterior distributions of the change points and the means, 6;;.

However, performing Bayesian inference for multiple change points parameter 6 estimation
is a challenging problem. Even when 6 is assumed known, exact computation of the posterior
distribution of the change points is intractable for large data sets. This issue is typically
tackled using Markov chain Monte Carlo (MCMC) techniques.

We used Monte Carlo simulation to study the performance of the constructed Bayesian
estimates in change estimation following a signal from c-chart, Poisson CUSUM, and Pois-
son EWMA control charts when a change (step, linear) is simulated to occur at 7 = 100.
We generated 100 observations of a Poisson process with an in-control rate of Ay = 20. To
investigate the behavior of the Bayesian estimators over the population for different change
sizes, we replicated this simulation 100 times. Simulated datasets that were obvious outliers
were excluded. The number of replication studies is a compromise between excessive compu-
tational time, considering MCMC iterations and sufficiency of the achievable distributions
even for tails.

In the step of change scenario, we induced step changes of sizes § = 6 as an example
and § = 42,46 for a replication study until control chart signaled. In this scenario, the
replication study was limited to c-chart, since other control charts mostly signaled prior to
the induction of the second change point.

Because we know that the process is in-control, if an out-of-control observation was gener-
ated in the simulation of the early 100 in-control observations, it was taken as a false alarm
and the simulation was restarted.

2.2. Maximum likelihood estimation

Maximum likelihood, also called the maximum likelihood method, is the procedure of
finding the value of one or more parameters for a given statistic which makes the known
likelihood distribution a maximum. Maximum likelihood estimation of an unknown change
point first begins with obtaining the maximum likelihood estimate (MLE) as a point esti-
mate. Interval estimates of any desired level, which are preferred over point estimates can be
constructed around the MLE. Hawkins (1977) studied change point detection in the series
following independent uni-variate normal distribution with possible change of mean.

It was shown that more precise estimates were obtained when ML estimators were used in
conjunction with Poisson control charts, compared to c-chart signals and CUSUM or EWMA
built-in estimators. A confidence interval on the estimated change point was constructed.

We consider a model for step change in the rate of a Poisson process. A step change in
the rate parameter occurs when the rate suddenly shifts from its in-control value to some
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out-of-control value, and remains at that out-of-control value until the appropriate process
adjustments are made. From this model, a maximum likelihood estimator of the process
change point is derived.

Consider a step change model for the behavior of a Poisson process rate parameter A. The
model assumes that the process is initially in control with independent observations coming
from a Poisson distribution with known rate A\g. After an unknown point in time, the rate
parameter changes from an in-control state of A = Ay to an unknown out-of-control state of

A=\, fori=7+1,---, and the functional form of )\; is given as

)\i:)\()‘i’ﬂ(i*’r) (21)
where (3 is the magnitude (or slope) of the linear trend disturbance. During the formulation
of subgroups t = 1,2,---,7 the process rate \; is equal to its known in-control value
Ao. For subgroups ¢ =7+ 1,---, T the process rate A; is equal to some unknown rate

Ai = Ao+ B(i — 7) where T is the most recent subgroup sample. This model can be used to
derive a maximum likelihood estimator for the process change point. We denoted the MLE
of the proposed change point estimator as 7. Assuming a process change point at 7, the
likelihood function is

e(7r0) \&s H e(=QotBE=T) (N\g + B(i — 7))

L(r.Ble) =]

(2.2)

where x; is the count corresponding to the ith subgroup. The MLE of 7 is the value of 7
that maximizes the likelihood in (2.2), or equivalently, its logarithm.

2.3. Assessment of data analysis

In this paper, Monte Carlo simulation have been applied to investigate the performance
of the Bayesian estimation in change estimation after a signal from c-chart and Poisson
cumulative sum (CUSUM) control charts observed. A multiple change is simulated to occur
at 7 = 100. Moreover, Poisson exponential weighted moving average (EWMA) chart have
been applied for comparing change point detection capacity with others considered. A Pois-
son process of 100 observations with an in-control rate of Ay = 20 have been generated for
this study. Different change sizes have been used to examine the behavior of the Bayesian
estimators over the population, the simulation method have been simulated 100 times. To
calculate the Poisson CUSUM statistic measures Sf, S;,k*, k™ are defined as follows;

St =max{0,S;_1 +x; — kT}, (2:3)
S: =max{0,k~ —z; + Si—1},
A1 — Ao
+_ M T A0
N = o —Tnag (25)
_ Ao — A1
_ oM 2.
ln)\o—ln)\l’ ( 6)

where S;_1 is the cumulative sum from the previous observations and z; is the numerical
value for i = 1,...,n observation. The kT and k~ are appropriate constants that utilizes
the average occurences of events \; in a specified time interval to calculate their values. If
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Sii exceeds the specified decision interval then the control chart signals that an increase (or
a decrease) in the Poisson rate occurred. We set the charts to detect a 25% shift in Poisson
rates. An alternative time-weighted chart which considered in this paper is the the Poisson
EWMA chart. This chart is typically used for two-sided alternatives. The EWMA statistic

is;
Zi=¢X;+(1—9¢)Z;i_1, (2.7)

where X; is it" observation, Z;_; is value of the EWMA statistic from the previous obser-
vation and 0 < ¢ < 1 is weighting constant.

The Shewhart (1926) methods have been used for c-chart and Poisson cumulative sum
control charts, respectively. A Poisson cumulative sum accumulates the difference between
an observed value and a reference value.

The R package had been used for all changes and control. To obtain posterior distributions
of the time and the magnitude of the changes, we used the R2WinBUGS interface in R
to generate 100,000 samples through MCMC iterations in WinBUGS for all change point
scenarios with the first 20,000 samples ignored as burn in. We then analyzed the results
using the CODA package in R.

2.4. Change models performance analysis

In Figure 2.1, the posterior distributions for the time and the magnitude of a step change
of size +6 are presented. Although there is slight difference in almost all control charts,
posterior distributions of the change point concentrate on the 100th sample which is the
real change point. As seen in the figure, the posteriors are not symmetric and are skewed
specially for the change in time. Therefore, the posterior mode can be an estimator for the
change point model parameters time and magnitude of step change (7,9).

A confidence interval (CI) is a posterior probability based interval which involves those
values of highest probability in the posterior density of the parameter of interest. The 50%
and 80% confidence intervals for the estimated time and the magnitude of step changes in
all three control charts are depicted in Table 2.1. Under the same probability of 0.8 for the
c-chart, the CI for the time of the step change of size § = +2 covers 53 samples around
the 100th sample whereas it decreases to 6 samples for § = +6 due to the smaller standard
deviation.

The comparison of the 50% and 80% CIs for the estimated time of a step change of size
0 = +6 in the Poisson EWMA reveals that the posterior distribution of the time is highly
left skewed and the increase in the probability contracts the left boundary of the interval,
from 96.9 to 88 in comparison with the shift in the right boundary.

Table 2.1 Credible intervals for the estimated time 7 and the magnitude of step changes §

é c-chart Poisson EWMA Poisson CUSUM
50% 80% 50% 80% 50% 80%
+» 7 (I0LI05)  (65118)  (96.6,14)  (71.2,1258)  (98.2105)  (65.2,108)
1) (2.1,3.2) (1.9,3.2) (1.41,2.65) (0.76,3.05) (0.12,2.50) (0.23,4.8)
16 T (97.9,100) (96,102) (96.9,101) (88,103) (96,101) (83,106)
5 (3952  (3.45.5) (2.2,4.1) (1.2,4.8) (1.31,4) (0.05,4.9)
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Figure 2.1 Posterior distributions of the time and the magnitude of a step change
Ao = 20,8 = 46, 7 = 100 following signals from (7, ) ¢ - chart, (7,6) EWMA
and (7,0) Poisson cumulative sum

The probability of the occurrence of the change point in the last 10, 25, and 50 observed
samples prior to signaling in the control charts is depicted in Table 2.2. For a step change of
size § = 42, since the c-chart signals very late, it is unlikely that the change point occurred
in the last 10, 25, and even 50 samples. In contrast, in the Poisson EWMA and CUSUM
charts, where they both signal earlier than the c-chart, the probabilities of occurrence in
the last 10 samples are 0.55 and 0.59, then increase to 0.76 and 0.82, respectively as the
next 15 samples are included. In the case of § = +6, for the c-chart, the 98% probability of
occurrences of change point is located between the last 25 and 50 samples for the ¢ - chart.

Table 2.2 Probability of occurrence of change point in last 10, 25, and 50 observed samples
c-chart Poisson EWMA Poisson CUSUM
) 10 25 50 10 25 50 10 25 50
+2 0.00 0.00 0.01 0.55 0.76 0.86 0.59 0.82 0.91
+6 0.00 0.01 0.99 0.06 0.86 0.95 0.91 0.97 0.99

3. Comparison of Bayesian and maximum likelihood estimators

To study the performance of the proposed Bayesian estimators in comparison with others,
we run the alternatives, built-in estimators of Poisson EWMA, CUSUM charts and ML
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estimators.
Table 3.1 Average of estimated time of linear trend in Poisson process
c-chart Poisson EWMA Poisson CUSUM
[ E(tmre)  E(m) E(tmLE) E(7p) E(tmLE) E(m)
-2 - 100.83 - 100.75 - 100.92
- -1.16 - -0.93 - -0.96
-1 - 102.05 - 102.14 - 102.74
- -2.36 - -2.07 - -2.18
-0.5 103.55 102.96 - 104.6 - 104.7
-3.48 -2.5 - -2.91 - -2.91
0.5 102.7 103.75 102.02 104.45 102.12 104.78
-3.19 -2.99 -9.23 -2.94 -11.68 -2.78
1 100.23 102.55 101.08 102.75 101.57 102.78
-3.19 -2.05 -12.42 -2.11 -3.59 -2.36
2 100.23 101.2 100.57 101.18 100.59 101.19
-2.81 -1.02 -4.07 -1.04 -3.81 -1.04

Table 3.1 shows the mean of the Bayesian estimates and detected change points provided
by built-in estimators of Poisson EWMA equation (2.7) and Poisson CUSUM equation (2.3)-
(2.6) charts and the ML estimator for a linear trend change in a Poisson process at different
magnitude of step change §. Application of the proposed ML estimator is restricted to trends
with a positive slope as Newton method is not tractable for decreasing trends in Poisson
mean.

The Bayesian estimator, 7,, the average time required to detect the change point in
Bayesian method almost outperforms the built-in estimator of EWMA, 7w a4 which is
the average time required to detect change point in Poisson EWMA using MLE technique
as in equation (2.7), where there exists a decreasing trend. This superiority increases when
the slope size § raises. The CUSUM estimator, Tcysua, the average time taken to detect
change point in Poisson CUSUM as in equation (2.3) - (2.6) chart estimates the change
point more precisely than 7w a4, the average time taken to detect change point in Poisson
EWMA as in equation (2.7) in both MLE and Bayesian estimation techniques. However the
Bayesian estimator, 73, still remains the best alternative for detection of linear trends with
negative slopes, when the variation of the estimates is taken into account.

Table 3.1 reveals that the Bayesian estimator, 7, that is the average time needed to
detect change point using Bayesian estimation in Poisson process is slightly outperformed
by the ML estimator, 7a;r g which is the average time when applying Maximum likelihood
estimation across the charts when there exists an increasing linear trend in the process
mean. However, the Bayesian estimator can still be a reasonable alternative in light of the
obtained standard deviations which are less than those observed from the ML estimator over
replications.

Apart from the accuracy and precision criteria used for the comparison study, the posterior
distributions for the time and the magnitude of a change enable us to construct probabilistic
intervals around estimates and probabilistic inferences about the location of change point.
This is a significant advantage of the proposed Bayesian approach. The approach to change
point identification described in this paper has the advantage of building on control charts
that may be already in place in practice.
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4. Conclusions

To identify the special causes of a failure of a given process, recognition of time when
the process has changed plays a great role. The technique of identifying the change point
drastically reduces the effort to resolve the problems happened. This paper modeled the
change point estimation for a Poisson process in a Bayesian framework. A step and multi-
ple change settings have been considered when the number of changes is known. We built
posterior distributions for change point estimates using MCMC. Comparisons of Bayesian
estimators with c-chart, Poisson EWMA, and CUSUM control charts have been performed.
It has been found that the Bayesian estimates outperform standard control charts in change
estimation, particularly where there exists a small to medium size of step change. Bayesian
estimator performs convincingly well in comparison with the maximum likelihood estimator
and remains good specially in conditions like confidence intervals estimation.

In Poisson process, detailed analysis of performance of Bayesian estimates over different
change scenario showed that each Bayesian change point model outperforms other models.
The importance of such analysis in any process specially in quality control confirmation
process is unquestionable. Therefore further in-depth study incorporating data from a given
process and using some more other change models is highly recommended.
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