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Abstract
Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or lon-

gitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel
data models; however, the inference based on the ML estimate will have an inflated Type I error because the
ML method tends to give a downwardly biased estimate of variance components when the sample size is small.
The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum
likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note
that the likelihood function of the model is complex in that it includes a multidimensional integral. Many au-
thors proposed to use integral approximation methods for the computation of likelihood function; however, it
is well known that integral approximation methods are inadequate for high dimensional integrals in practice.
This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of
multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.
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1. Introduction

The panel regression model with individual specific effects has the following specification:

wit = x′itβ + µi + ϵit, i = 1, 2, . . . , n; t = 1, 2, . . . , Ti, (1.1)

where wit is the dependent variable, xit is the p×1 vector of predictors, β is the p×1 vector of regression
coefficients, µi is the time-invariant individual specific effect, and ϵit is the remaining disturbance term.
Here, subscripts i and t represent the individual and the time period, respectively. When µi is assumed
to be constant over time, the model is referred to as the “fixed effects” model, which is known to have
an incidental parameter problem (Lancaster, 2000), while the “random effects” model treats µi as a
random variable. As McCulloch (1996) stated, a frequentists decision to regard an effect as fixed or
random is a complicated one, but we will assume that the individual specific effect µi’s are random
and independent of the regressors xit.

The standard assumption of the error term, viz. ϵit’s are independent and identically distributed
normal random variable. This implies that the dependent variable can be any real number; however,
in many statistical analyses the dependent variable can only be observable on limited ranges. For
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example, a dependent variable is constrained to be positive, as in the case of wage or hours worked.
Unemployed people are left-censored at zero since the wage or working hours would be zero. To
incorporate the unemployed in the model, the dependent variable is commonly treated as an unob-
servable latent variable, which leads to the standard Tobit model (Tobin, 1958).

A generalization of the standard Tobit model is that the dependent variable can be censored in
either left, right or both directions of a Type I Tobit model, where the observed values of the dependent
variable are defined as

yi =


ℓ, if wi ≤ ℓ,
wi, if ℓ < wi < u,
u, if wi ≥ u,

(1.2)

where ℓ and u are known lower and upper censored points. Thus, the standard Tobit model is a special
case of Type I Tobit model with ℓ = 0 and u = ∞.

Such a censored dependent variable commonly occurs in survival analysis, biomedical and epi-
demiological studies. The usual estimation method fails to provide consistent estimates for a conven-
tional regression model. This leads to discussing the estimation methods in the censored regression
model (Tobin, 1958; Maddala, 1983; and Amemiya, 1984). Currently, the dominating method may
be the maximum likelihood (ML), which is implemented in most statistical packages dealing with a
censored regression model. For example, R packages such as AER (Kleiber and Zeileis, 2009), and
NADA (Lee, 2017) give ML estimates for the usual linear regression model. See also “qlim” proce-
dure in SAS (2011). In particular, censReg (Henningsen, 2017) and “xttobit” of Stata (2017) provide
ML estimates for the random effects panel regression model.

The ML estimator in nonlinear panel data model with fixed effects is widely understood to be
biased and inconsistent when the length of panel T is small; however, Green (2004) found in simula-
tion studies, that the finite sample bias of the ML method appears in the disturbance variance rather
than in the slope parameters. Since, it is known that when the sample size is small, the ML estimate
of disturbance variance is biased downward, and inferences on the regression coefficients will have
an inflated Type I error rate because their precision is overstated. It is desirable to consider other
estimation methods when the sample size is small. We believe that Bayesian estimation could be
an alternative (Lee, 2016); however, a natural frequentist substitute may be the restricted maximum
likelihood (REML) method (Patterson and Thomson, 1971).

Note that REML estimates variance components on the basis of residuals resulting after eliminat-
ing the fixed effects contained in a model. This makes REML divide the mean squared deviation by
degrees of freedom instead of by sample size, which can remedy the downward bias of ML. It also has
a Bayesian justification. Today, REML is widely used for the estimation of variance components in
various mixed effects models with complete data, but surprisingly it is not well established for limited
dependent variable models such as the binary or the censored dependent variable model. Even the
definition of REML procedure is unclear. For example, Lee and Nelder (2001) regarded the REML as
an adjusted profile likelihood method, but Drum and McCullagh (1993) considered it as an unbiased
estimation equation method. See, Noh and Lee (2007) for further details.

The difficulty of an ML based approach for the limited dependent variable model lies mainly in
computational problem rather than theoretical aspect. For instance, Hughes (1999) provided ML and
REML estimates in a general mixed-effects linear model with censored data using a Monte Carlo
EM algorithm and claimed that the approach can be used with an arbitrarily complex design matrix;
however, such a EM based method lacks the capability of providing standard errors of variance com-
ponents. He gave asymptotic standard errors for only fixed effects relying on the maximum likelihood
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theory. Since the asymptotic standard error does not take account of the estimation of variance com-
ponents, the approximation may not be theoretically appealing. Like Hughes (1999), most works
dealing with REML focus on the parameter estimation itself and did not mention the standard error of
REML estimates. It is believed that the calculation of the asymptotic standard error of REML estimate
is another challenging work.

The problem lies in the likelihood based methods with a limited dependent variable is the com-
putation likelihood function. It is difficult to maximize the function directly because the likelihood
function contains multidimensional integrals. Many authors proposed to use an integral approxi-
mation method for the computation of a likelihood function, and then maximize the approximated
likelihood function. Various integral approximation methods such as Newton and Gauss-Hermite
quadratures, Monte Carlo integration and Markov Chain Monte Carlo have been employed for this
purpose. The approximation method enables the likelihood based estimation in the limited dependent
variable model; however, it is well known that such integral approximation methods are inadequate
for high dimensional integrals. It may be difficult to get a good approximation when the number of
censored observation is large under the censored random effects panel model. Indeed, it is observed
that statistical packages using different methods give quite different results. See Zhang et al. (2011)
for further details.

The main object of this paper is to present a REML procedure for a censored dependent variable
model. Many authors have considered REML in binary dependent variable models, but we can only
find limited literature on REML estimation with censored data. The censored dependent variable
model resembles the normal-probit model for binary data; however, the methodology used in the
normal-probit model cannot be directly applicable to the model considered here in that we do not use
an approximation method. It is also demonstrated through a simulation study that when the sample
size is small, REML is a proper method in the sense that inferences based on it have the Type I error
rate close to a nominal level.

2. Restricted maximum likelihood method

2.1. Estimation

Let µ ∼ N(0, σ2
µI) and ϵ ∼ N(0, σ2

µI) where µ and ϵ are independent random vectors of µi’s and ϵit’s,
respectively, and N =

∑n
i=1 Ti. Writing (1.1) as w = Xβ + Zµ + ϵ, where X is the N × p matrix of

regressors and Z is the N × n incident matrix for µi’s, the likelihood can be written as

L
(
β, σ2

µ, σ
2
ϵ ; y

)
=

∫
R

f (w)du, (2.1)

where f (w) is the probability density function of a multivariate normal random vector with mean Xβ,
variance-covariance matrix V = ZZ′σ2

µ + Iσ2
ϵ , R = {w : y(w) = y} is the set of latent variables given

the observed data y, and u is the Lebesgue measure.
Note that when data is complete, i.e., no censored observations, the REML equations for variance

components are shown to be

w′P
∂V
∂σ2

i

Pw = tr
P ∂V
∂σ2

i

 , i = µ, ϵ,

where P = V−1 − V−1X
(
X′V−1X

)−
X′V−1 (Searle et al., 2006, p.251). For a censored data, we take

conditional expectation on the REML equations, and hence estimates are obtained by solving the
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following equations.

S σ2
µ
= E

(
w′PZZ′Pw | y ) − tr

(
PZZ′

)
= 0, (2.2)

S σ2
ϵ
= E

(
w′PPw | y ) − tr (P) = 0, (2.3)

where tr(A) denotes the trace of a square matrix A. As we noted before, REML is not uniquely
defined when data is incomplete. For instance, McCulloch (1994) gave an EM algorithm for REML
estimation in a probit-normal model by treating the fixed effects as random effects whose variance
tend to infinity. The EM algorithm solve the above estimation equations; therefore, our definition of
REML coincides with the approach of McCulloch (1994). See also, Hughes (1999).

In general, the REML estimation includes no procedure to estimate fixed effects. The fixed-effects
are estimated with the estimated random components in a complete data case; however, the conditional
expectations are determined by the variance components as well as by the slope parameter β. The
random components and fixed effects should therefore be estimated simultaneously. As Searle et al.
(2006) suggested, the log-likelihood equation for the ML of β will be used.

S β =
∂

∂β
log

∫
R

f (w)du =

∫
R X′V−1(w − Xβ) f (w)du∫

R f (w)du
= X′V−1(E(w|y) − Xβ). (2.4)

To solve the equations, it needs to compute the conditional expectations related to the moments of
a multivariate truncated normal random vector. Thus, the calculation of the moments is essential and
is the main problem of ML based approaches. Many researchers employed the Gibbs sampler or the
Gauss-Hermit numerical integration method to approximate the moments and then used the EM or
variations of EM algorithms. However, such numerical methods are generally not recommended for
high dimensional integrals. Since, the dimensionality is increasing with the number of censored ob-
servations, it could not give proper approximation when the number of censored observations is large.
An EM based method also lacks the capability of providing the standard error of REML estimate. To
compute the standard error, it requires to compute up to the 4th order moments, which may be hard to
approximate by numerical methods.

There is a long history of the moment calculation for a multivariate truncated normal random
vector. Using the moment generating function or recurrence relationships, many moment calculation
methods have been proposed under various conditions, see Arismendi (2013). Among them, Kan and
Robotti (2017) gave a method meet our demand. In what follows, we assume safely that necessary
moments of truncated variables could be obtainable. It would be worth mentioning that their algorithm
requires to compute 5m conditional expectations where m is the number of censored observations
that may be huge in some applications; however, once we notice that in the panel regression model,
observations from different individuals are independent, the computational burden could be reduced
greatly.

To compute the conditional expectations in (2.2), (2.3), and (2.4), we assume that the last m of y
are censored observations. The vectors of uncensored and censored observations will be denoted by
y1 = (y1i, . . . , y1N−m)′ and y2 = (y21, . . . , y2m)′, respectively. Likewise the vector of latent variables
and the matrix of regressors are partitioned as w′ = (w′1,w

′
2) and X′ = (X′1,X

′
2). Then, w2|w1 = y1

is a multivariate normal random vector with mean µw2 |y1
= X2β + V21V−1

11 (y1 − X1β) and variance-
covariance matrix Vw2 |y1 = V22 − V21V−1

11 V12 where Vi j, i, j = 1, 2 are the partitioned matrices of V
according to w1 and w1. This shows that w2|y is a multivariate truncated normal random vector. To
be precise, notations related to a multivariate truncated normal distribution are defined as follows.



REML of a censored random effects panel regression model 375

Suppose zn×1 ∼ N(µ,V) and R = {(z1, . . . , zn) : ai ≤ zi ≤ bi, i = 1, . . . , n}, then the distribution of
z|z ∈ R is a multivariate truncated normal on R, and it will be represented by z|z ∈ R ∼ T N(a,b)(µ,V),
where a = {ai}ni=1 and b = {bi}ni=1.

Note that each element of y2 is either ℓ or u. For each i = 1, . . . ,m, y2i = ℓ indicates that w2i is
left-truncated, and then define a∗i = −∞ and b∗i = ℓ. Similarly, if y2i = u, let a∗i = u and b∗i = ∞. Then,
we have w2|y ∼ T N(a∗,b∗)(µw2 |y1

,Vw2 |y1 ).
The conditional expectation of a quadratic form of w is equal to

E
(
w′Aw | y )

= y′1A11y1 + 2y′1A12E(w2|y) + E
(
w′2A22w2 | y

)
. (2.5)

Here, a symmetric matrix A is partitioned in an obvious manner. Thus, it needs to compute up to the
second order moments of a multivariate truncated normal random variable to evaluate the conditional
expectation. In fact, we need to compute every quantities E(w j1

2i1
w j2

2i2
w j3

2i3
w j4

2i4
|y) where ik ∈ (1, . . . ,m),

k = 1, . . . , 4 and jk’s are nonnegative integers satisfying
∑4

k=1 jk ≤ 4. Then, the conditional expecta-
tion of a quadratic form of the latent variables shown in (2.2) or (2.3) can be calculated by (2.5) and
E(w′2A22w2| y) = tr(A22E(w2w′2|y)).

The Newton-Raphson method is applicable to solve estimation equations that require the deriva-
tive of the equations to form a Jacobian matrix. One may consider a numerical derivative method,
which may reduce some computational burden, and hence may speed up getting the Jacobian matrix.
However, we found that a numerical method is quite unstable. Besides, the Jacobian can be obtained
analytically.

Using a well-known ML theory, the partial derivatives of S β with respect to β′ and σ2
i , i = µ, ϵ are

shown to be
∂S β
∂β′
= −X′V−1X + X′V−1Vw|yV−1X

and

∂

∂σ2
i

S β = −X′V−1 ∂V
∂σ2

i

V−1
[
E(w|y) − Xβ

]
− X′V−1Vw|yV−1 ∂V

∂σ2
i

V−1Xβ

+
1
2

X′V−1Cov
w,w′V−1 ∂V

∂σ2
i

V−1w
∣∣∣∣∣∣ y

 ,
where Vw|y is the conditional variance of W given observed y, ∂V/∂σ2

µ = ZZ′ and ∂V/∂σ2
ϵ = I. For

the differentiation of S σ2
µ

and S σ2
ϵ
, the following theorem is applicable.

Theorem 1. Let A be a symmetric matrix which depends on σ2
µ and σ2

ϵ , but not β, then for i = µ or
ϵ, we have

∂

∂β′
E

(
w′Aw|y) = Cov(w′Aw,w|y)V−1X,

and

∂

∂σ2
i

E(w′Aw|y) = E
w′
∂A
∂σ2

i

w
∣∣∣∣∣∣ y

 + 1
2

Cov
w′Aw,w′V−1 ∂V

∂σ2
i

V−1w|y


− Cov
(
w′Aw,w|y) V−1 ∂V

∂σ2
i

V−1Xβ.
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Proof: The conditional expectation can be written as

E(w′Aw|y) =
∫
R

w′Aw f (w)du
/ ∫
R

f (w)du,

and (∂/∂β′) f (w) = (w − Xβ)′V−1X f (w), we have

∂E(w′Aw|y)
∂β′

=

∫
R w′Aw ∂

∂β′ f (w)du∫
R f (w)du

−

∫
R w′Aw f (w)du

∫
R
∂
∂β′ f (w)du[∫

R f (w)du
]2

=
[
E(w′Aw(w − Xβ)′|y) − E(w′Aw|y)E((w − Xβ)′|y)

]
V−1X

= Cov(w′Aw,w|y)V−1X.

Likewise, (∂/∂σ2
i ) f (w) = (1/2)[(w − Xβ)′V−1(∂V/∂σ2

i )V−1(w − Xβ) − tr(V−1∂V/∂σ2
i )] f (w) gives

∂E(w′Aw|y)
∂σ2

i

=

∫
R
∂
∂σ2

i
{w′Aw f (w)} du∫
R f (w)du

−

∫
R w′Aw f (w)du

∫
R
∂
∂σ2

i
f (w)du[∫

R f (w)du
]2

=
1
2

E
w′Aw

(w − Xβ)′V−1 ∂V
∂σ2

i

V−1 (w − Xβ) − tr
V−1 ∂V

∂σ2
i


∣∣∣∣∣∣ y


− 1

2
E(w′Aw|y)

E
(w−Xβ)′V−1 ∂V

∂σ2
i

V−1(w−Xβ)

∣∣∣∣∣∣ y
−tr

V−1 ∂V
∂σ2

i

+ E
w′ ∂A
∂σ2

i

w
∣∣∣∣∣∣ y


= E
w′
∂A
∂σ2

i

w
∣∣∣∣∣∣ y

 + 1
2

Cov
w′Aw, (w − Xβ)′V−1 ∂V

∂σ2
i

V−1(w − Xβ)

∣∣∣∣∣∣ y


= E
w′ ∂A
∂σ2

i

w
∣∣∣∣∣∣ y
+ 1

2
Cov

w′Aw,w′V−1 ∂V
∂σ2

i

V−1w|y
 − Cov

(
w′Aw,w|y) V−1 ∂V

∂σ2
i

V−1Xβ.

�

Theorem 1 is quite standard and is useful not only for REML but also for ML estimation. Perhaps
it is well known, but we could not find a statement of the second order derivatives when data is
incomplete. We include the proof for completeness. The second order derivatives gives an advantage
of our definition of REML as the solution of (2.2), (2.3), and (2.4) in that the asymptotic standard
error can be expressed as analytic forms rather than numerical forms.

Once we note PPZZ′P is a symmetric matrix, PPZZ′P = PZZ′PP, and (∂/∂σ2
i )P = −P(∂V/∂σ2

i )
P, then Theorem 1 gives following partial derivatives

∂S σ2
µ

∂β′
= Cov(w′PZZ′Pw,w|y)V−1X,

∂S σ2
µ

∂σ2
µ

= −2E
(
w′PZZ′PZZ′Pw

∣∣∣y) + 1
2

Cov
(
w′PZZ′Pw,w′V−1ZZ′V−1w|y

)
− Cov

(
w′PZZ′Pw,w|y) V−1ZZ′V−1Xβ + tr

(
PZZ′PZZ′

)
,

∂S σ2
µ

∂σ2
ϵ

= −2E
(
w′PPZZ′Pw

∣∣∣ y) + 1
2

Cov
(
w′PZZ′Pw,w′V−1V−1w|y

)
− Cov

(
w′PZZ′Pw,w|y) V−1V−1Xβ + tr

(
PZZ′P

)
,
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∂S σ2
ϵ

∂β′
= Cov(w′PPw,w|y)V−1X,

∂S σ2
ϵ

∂σ2
µ

= −2E
(
w′PPZZ′Pw

∣∣∣ y) + 1
2

Cov
(
w′PPw,w′V−1ZZ′V−1w|y

)
− Cov

(
w′P′Pw,w|y) V−1ZZ′V−1Xβ + tr

(
PZZ′P

)
,

∂S σ2
ϵ

∂σ2
ϵ

= −2E
(
w′PPPw

∣∣∣ y) + 1
2

Cov
(
w′PPw,w′V−1V−1w|y

)
− Cov

(
w′PPw,w|y) V−1V−1Xβ + tr (PP) .

Let S(θ) be the vector of S θ, S σ2
µ
, and S σ2

ϵ
where θ = (β′, σ2

µ, σ
2
ϵ )
′, then the partial derivatives and

S(θ) consist of conditional moments of the forms, E(w|y),Var(w|y), E(w′Aw|y), Cov(w,w′Aw|y), and
Cov(w′Aw,w′Bw|y) where A and B are some symmetric matrices. Let us consider the calculation of
these quantities. The first two are

E(w|y) =
(

y1
E(w2|y)

)
and Vw|y = Var(w|y) =

(
0 0
0 Vw2 |y

)
,

where Vw2 |y = E(w2w′2|y) − E(w2|y)E(w′2|y), and the third type has been seen before. Also, one may
know that the first N − m elements of N × 1 vector Cov(w,w′Aw|y) are zero. Indeed, and it can be
shown

Cov(w,w′Aw|y)′ =
(
0′,

[
Cov

(
w2,w′2A22w2|y

)
+ 2Vw2 |yA21y1

]′)
.

Since, the ith element of Cov(w2,w′2A22w2|y) is equal to

Cov
(
w2i,w′2A22w2|y

)
= E

(
w2iw′2A22w2|y

) − E(w2i|y)E(w′2A22w2|y),

and for each i = 1, 2, . . . ,m,

E
(
w2iw′2A22w2|y

)
=

m∑
j=1

m∑
k=1

a22
jk E

(
w2iw2 jw2k |y

)
= a22

ii E
(
w3

2i|y
)
+ 2

m∑
j,i

a22
i j E

(
w2

2iw2 j|y
)
+

m∑
j,i

a22
j j E

(
w2iw2

2 j|y
)
+ 2

m∑ m∑
j<k
j,k,i

a22
jk E

(
w2iw2 jw2k |y

)
,

where a22
i j denotes the (i, j)th element of A22, Cov(w,w′Aw|y) is computable with up to the 3rd or-

der conditional moments of a multivariate truncated normal random vector. Finally, the conditional
covariance of two quadratic forms of latent variables is shown to be

Cov
(
w′Aw,w′Bw|y) = 4y′1A12Vw2 |yB′12y1 + 2y′1A12Cov

(
w2,w′2B22w2|y

)
+ 2Cov

(
w′2A22w2,w2|y

)
B′12y1 + Cov

(
w′2A22w2,w′2B22w2|y

)
,

and the last term of above equation is equal to E(w′2A22w2w′2B22w2|y)−E(w′2A22w2|y)E(w′2B22w2|y).
Since

E
(
w′2A22w2w′2B22w2|y

)
= tr

[
B22E

(
w2w′2A22w2w′2|y

)]
,
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the conditional covariance can be calculated if E(w2w′2A22w2w′2|y) is given. Let ei j be the (i, j)th

element of E(w2w′2A22w2w′2|y), then we have

eii = a22
ii E

(
w4

2i|y
)
+ 2

m∑
k,i

a22
ik E

(
w3

2iw2k |y
)
+

m∑
k,i

a22
kk E

(
w2

2iw
2
2k |y

)
+ 2

m∑ m∑
k<ℓ,k,ℓ,i

a22
kℓE

(
w2

2iw2kw2ℓ |y
)
,

for i = 1, . . . ,m and

ei j = a22
ii E

(
w3

2iw2 j|y
)
+ a22

j j E
(
w2iw3

2 j|y
)
+ 2a22

i j E
(
w2

2iw
2
2 j|y

)
+ 2

m∑
k,(i, j)

a22
ik E

(
w2

2iw2 jw2k |y
)

+ 2
m∑

k,(i, j)

a22
jk E

(
w2iw2

2 jw2k |y
)
+

m∑
k,(i, j)

a22
kk E

(
w2iw2 jw2

2k |y
)
+ 2

m∑ m∑
k<ℓ

k,ℓ,i, j

a22
kℓE

(
w2iw2 jw2kw2ℓ |y

)
,

for i, j = 1, . . . ,m; i , j.
Thus, the nonlinear simultaneous equations, S(θ) = 0 and the Jacobian consisting of

J(θ) =



∂S β
∂β′
,
∂S β
∂σ2
µ

,
∂S β
∂σ2
ϵ

∂S σ2
µ

∂β′
,
∂S σ2

µ

∂σ2
µ

,
∂S σ2

µ

∂σ2
ϵ

∂S σ2
ϵ

∂β′
,
∂S σ2

ϵ

∂σ2
µ

,
∂S σ2

ϵ

∂σ2
ϵ


.

are computable with conditional moments E(w j1
2i1

w j2
2i2

w j3
2i3

w j4
2i4
|y),

∑4
k=1 jk ≤ 4, which are assumed to

be given by the algorithm of Kan and Robotti (2017).
The REML estimate of θ can be found by applying the Newton-Raphson method,

θ̂(i+1) = θ̂(i) − J−1
(
θ̂(i)

)
S
(
θ̂(i)

)
with an arbitrary initial value θ̂(0). If convergence is reached at the t-step, we set θ̂(t+1) as the REML
estimate. For the initial value, it may use the estimate of θ based only on uncensored observations.
We have used a R package, plm of Croissant and Millo (2008) for this purpose. With this initial value,
we could get the convergence in almost all cases among 1,000 replications shown in Section 4.

2.2. Standard error

When data is incomplete, it seems that the standard error of REML is more complex than ML, because
Louis (1982) provided the incomplete data Hessian in terms of the conditional expectations of the
complete data Hessian, which makes it possible to work with incomplete data. Theoretically there is
no difficulty in ML estimation since the Hessian is directly related to the variance of the ML estimate.
Many alternatives to Louis’s method have also been proposed (Meilijson, 1989; Meng and Rubin,
1991; Duan and Fulop, 2011). The problem exists in the REML estimation is that, unlike the ML case,
the Hessian does not give a variance. However, it is hard to find literature mentioning the standard
error despite most researchers mentioning REML estimation with incomplete data. Regardless, a
slight variant of the maximum likelihood theory can give an asymptotic variance of REML estimate.
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Theorem 2. Let θ̂ be a solution to S(θ) = 0, then an asymptotic variance of θ̂ is given by

Var
(
θ̂
)
≈ J−1

(
θ̂
)

[Var (S (θ))]
[
J−1

(
θ̂
)]′
, (2.6)

where J(θ) is the Jacobian of S(θ).

Proof: The Taylor series expansion gives S(θ) ≈ S(θ̂)+J(θ̂)(θ̂−θ), but S(θ̂) = 0, we have J−1(θ̂)S(θ) ≈
θ̂ − θ. �

In the ML estimation, the Hessian is equal to the Jacobian, and the variance of score is obtained
by the expected value of minus the Hessian, −E[(∂2 log L)/(∂θ∂θ′)] called the Fisher information or
the expected information. Thus, if we regard S(θ) as the score of ML, Var(S(θ)) plays the role of
the expected information. Note that Efron and Hinkley (1978) stated that in most cases the observed
information, which is equal to minus the Hessian, is a more appropriate measure of information than
the expected information, and an asymptotic variance of ML estimate is usually computed using the
observed information rather than expected information. Thus, it may be desirable to replace Var(S(θ))
by some observed information like quantity.

To use Theorem 2, Var(S(θ)) should be given. Since, ∂S β/∂β′ = (∂2 log L)/(∂β∂β′), using the
maximum likelihood theory, we have

Var(Sβ) = −E
[
∂2 log L
∂β∂β′

]
= X′V−1X − X′V−1Var(w|y)V−1X,

but, ∂Sσ2
i

/
∂σ2

i does not give the variance of Sσ2
i

for i= µ, ϵ. To compute Var(S σ2
i
), we can use a

relationship Var(E(X|Y)) = Var(X) − E(Var(X|Y)). That is, the variance of conditional expectation of
a quadratic form can be obtained by

Var
[
E(w′Aw|y)

]
= Var(w′Aw) − E

[
Var(w′Aw|y)

]
= 2tr(AVAV) + 4β′X′AVAXβ − E

[
Var

(
2y′1A12w2 + w′2Aw2|y

)]
. (2.7)

As stated before, the variance given in (2.7) plays the role of the expected information, but in view of
Efron and Hinkley (1978), it would be better to use the non-expected value of (2.7). Thus, we replace
the expectation part in (2.7) by

Var
(
2y′1A12w2 + w′2Aw2|y

)
= 4y′1A12Vw2 |yA′12y1 + 4y1A12Cov(w2,w′2Aw2|y) + Var(w′2Aw2|y).

Since, Var(w′2Aw2|y) = Cov(w′2Aw2,w′2Aw2|y), we can use previous results for computing the condi-
tional variance. Similarly, for the covariance of Sβ and Sσ2

i

Cov
[
X′V−1 (E(w|y) − Xβ) ,E(w′Aw|y)

]
= X′V−1Cov

(
w,w′Aw

) − X′V−1E
[
Cov

(
w,w′Aw|y)]

= 2X′AXβ − X′V−1E
[
Cov

(
w,w′Aw|y)] (2.8)

is applicable. Finally, the covariance of Sσ2
µ

and Sσ2
ϵ

is equal to

Cov
(
Sσ2

µ
,Sσ2

ϵ

)
= Cov

(
w′PZZ′Pw,w′PPw

) − Cov
(
w′PZZ′Pw,w′PPw|y) (2.9)

= 2tr(PZZ′PVPPV) + 4β′X′PZZ′PVPPXβ − E
[
Cov

(
w′PZZ′Pw,w′PPw|y)] .

The expected values in (2.8) and (2.9) will be replaced by non-expected values, Cov
(
w,wAw|y) and

Cov
(
w′PZZ′Pw,w′PPw|y), respectively for calculating asymptotic standard errors.
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Table 1: Estimates of EmpUK data

REML ML
Estimate Std. err t-value Estimate Std. err t-value

(Intercept) 2.3431 0.7921 2.958 2.3423 0.7901 2.965
wage −0.0814 0.0164 −4.970 −0.0814 0.0164 −4.977

capital 0.1245 0.0424 2.939 0.1248 0.0422 2.956
output 0.0424 0.0039 10.971 0.0424 0.0039 10.986
σ2
µ 35.1454 4.5396 34.8675 4.4131
σ2
ϵ 1.1414 0.0562 1.1382 0.0558

REML = restricted maximum likelihood; ML = maximum likelihood.

3. Examples

In this section, we demonstrate two examples to reflect some of main features of REML and ML
estimates. In addition, we wish to talk about some computational issues.

Example 1. The first data “EmpUK” presented by Arellano and Bond (1991) is an unbalanced
panel of 140 observations from 1976 to 1984. It consists of 1031 observations on 7 variables. The
dependent variable “emp” has a heavily right-skewed distribution, and some observations are quite
large compared with most observations. The values of “emp” larger than 30 are treated the same in
this example. That is, we assume that the dependent variable is right-censored at 30, then 57 out of
1031 are treated as censored observations. Because of the assumption, the estimation itself may not
be meaningful, but it is believed that the data is suitable to show a large sample property of REML
and ML estimates.

Table 1 shows the estimates of REML and ML. All the computations are done under R (R Core
Team, 2017) with RcppArmadillo (Eddelbuettel and Sanderson, 2014) and Rcpp (Eddelbuettel et al.,
2018). The two estimation methods do not make differences to the estimate of variance components
as well as slope parameters. The ML estimate of random component is only slightly smaller and has
the tendency to have a slightly smaller standard error than REML, but it is hard to find some statistical
meaning. Because the downward bias is a small sample property, this result can be predictable. Since,
ML is theoretically preferable method, it seems that the REML has little or no theoretical support.

Both censReg (Henningsen, 2017) and xttobit of Stata (2017) have a capability of ML estimation
for a censored random-effects panel regression model. We first used censReg to get the ML estimates
for Table 1, but found that it is quite unstable and failed to give estimates. It mainly uses numerical
methods, the Gauss-Hermite quadrature (GHQ) for approximating the log-likelihood, and a numerical
differential method, but GHQ is generally not recommended for high dimensional integrals. Since,
the dimensionality is increasing with the number of censored observations, it could not give a proper
approximation when the number of censored observations is large. Generally, increasing the number
of quadratic points, nGHQ increases the accuracy of the computation, but increasing nGHQ was
not helpful for the ML estimation of “EmpUK” data. Even when nGHQ is sufficiently large, small
changes in nGHQ produced quite different estimates.

We did not examine xttobit, but it uses the same algorithm and carries an inherent possibility that
xttobit suffers the same problem. It seems that censReg is only good when the number of censored
observations is small. Even that case, we must be careful about the value of nGHQ. In censReg, the
default value of nGHQ is 8, but it would not be large enough, because Lesaffre and Spiessens (2001)
gave a simple example of a logistic random-intercepts model in the context of a longitudinal clinical
trial where nGHQ gives valid results only for a high number of quadrature points. The author of
censReg may recognize this point. He gave an example showing the effect of nGHQ.
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Table 2: Estimates of an artificial panel data

REML ML
Estimate Std. err t-value Estimate Std. err t-value

(Intercept) −0.3921 0.4782 −0.820 −0.3655 0.4612 −0.792
x1 1.7020 0.2186 7.787 1.6838 0.2124 7.927
x2 2.2875 0.6919 3.306 2.2636 0.6739 3.359
σ2
µ 0.9005 0.5109 0.7961 0.4474
σ2
ϵ 1.0175 0.2720 0.9734 0.2534

REML = restricted maximum likelihood; ML = maximum likelihood.

Example 2. We borrow an artificial panel data, which include 60 observations of 15 panels, shown
in Henningsen (2017) for the second example. The dependent variable y is modeled by 2 independent
variables x1 and x2. Among the 60 values of y, 20 observations are left-censored at 0. The REML
is generally distinguish from the ML when sample size is small; therefore, the data may be adequate
for demonstrating the small sample property of two estimates. Table 2 shows the estimates and their
standard errors.

It can be observed that the estimates are nearly the same for all slope parameters. For instance,
relative distances between REML and ML estimates (θ̂ML − θ̂REML)/std(θ̂ML) are nearly equal to zero
for all slop parameters. But two methods make a difference in the estimate of random components.
The ML gives a slightly smaller estimate of variance components. Also, the standard errors of ML
are smaller than the REML for all parameters. It is believed that the REML can remedy the underesti-
mation of the ML in this small data since ML is known to underestimate variance components, which
leads to the underestimated standard error.

4. Simulation study and conclusion

REML was distinguished from ML in the estimation of variance components and standard errors.
When a sample size is small, an inference based on ML estimates may not be appropriate because
of the inflated Type I error due to the underestimated standard error. It seems that REML is more
adequate for the inference of a censored regression model since REML reports a larger standard error
than ML. To see this, we have performed a simulation under the study design used in Example 2. That
is, we have generated a dataset according to

yit = max {β0 + β1x1it + β2x2it + µi + ϵit, 0} , µi
iid∼ N

(
0, σ2

µ

)
and ϵ iid∼ N

(
0, σ2

ϵ

)
,

where yit is the observation of the dependent variable. The regressors x1 and x2 are selected from a
standard normal and a uniform distribution ranging 0 to 1, respectively. The parameters are given by
(β0, β1, β2, σ

2
µ, σ

2
ϵ ) = (−1, 2, 3, 1, 1).

The data generation process has been repeated 1,000 times. Some estimates of variance compo-
nents may become negative. In particular, the ML method often estimates σ2

µ negatively. The negative
estimates could be constrained to zero. We could only consider T = 4 and n = 10, 15 since the dif-
ference between two methods is statistically meaningful when sample size is small and the algorithm
is computationally expensive. Based on 1,000 replications for each case, the average of estimates
and the empirical mean squared error have been computed (Table 3). Also, a 95% Wald confidence
interval for the slope parameter has been constructed for each replication, and then we have calculated
the empirical coverage probability of the interval to measure the adequacy of the calculated standard
error. If the standard error is asymptotically correct, then the coverage probability would be close to
0.95.
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Table 3: Summary of simulation

n θ
REML ML

Aver. Est Aver. std MSE Coverage Aver. Est Aver. std MSE Coverage

10

β0 −1.0630 0.5933 0.3953 0.937 −1.0156 0.5604 0.3748 0.922
β1 2.0481 0.2918 0.0930 0.941 2.0225 0.2785 0.0891 0.936
β2 3.0525 0.7827 0.6436 0.937 3.0156 0.6763 0.6852 0.925
σ2
µ 1.0732 0.7353 0.5264 0.9133 0.6058 0.4005
σ2
ϵ 1.0027 0.3657 0.1363 0.9258 0.3218 0.1194

15

β0 −1.0579 0.5354 0.3125 0.944 −1.0195 0.5131 0.3077 0.924
β1 2.0184 0.2216 0.0758 0.949 2.0122 0.2550 0.0538 0.940
β2 3.0500 0.7061 0.5191 0.940 3.0095 0.7608 0.5048 0.930
σ2
µ 1.0483 0.5884 0.3474 0.9506 0.5532 0.3316
σ2
ϵ 0.9901 0.2982 0.0947 0.9408 0.2919 0.1008

(β0, β1, β2, σ
2
µ, σ

2
ϵ ) = (−1, 2, 3, 1, 1). REML = restricted maximum likelihood; ML = maximum likelihood; MSE = mean

squared error.

Note that the coverage probabilities of ML are smaller than the nominal level for all sample sizes.
In particular, when n = 10, we may say that the coverage probability is far below the nominal level.
The coverage probabilities of REML are also below the nominal level, but REML gives coverage
probabilities closer to 0.95 than ML. Thus, it may be concluded that the REML can provide a proper
standard error of the estimate.

However, the ML tends to have smaller empirical mean squared error. Thus, ML is theoretically
appearing when we wish to estimate the parameter itself; however, the inference, such as the interval
estimation or the hypothesis testing on the slope parameter, based on ML may not be adequate when
the sample size is small. Perhaps, this is well known in the general linear model.

We have considered a methodology under a censored random effect panel regression model, but
the methodology can be applicable to a general mixed-effects linear model with limited dependent
variables.
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