• Title/Summary/Keyword: maximal ideals

Search Result 81, Processing Time 0.035 seconds

BRAUER GROUP OVER A KRULL DOMAIN

  • Lee, Heisook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.135-137
    • /
    • 1989
  • Let R be a Krull domain with field of fractions K. By Br(R) we denote the Brauer group of R. Studying the Kernel of the homomorphism Br(R).rarw.Br(K), Orzech defined Brauer groups Br(M) for different categories M of R-modules [4]. In this paper we show that an algebra A in Br(D) is a maximal order in A K and that the map Br(D).rarw. Br(K) is one to one. We note here few conventions. All rings are Krull domains and all modules will be unitary. By Z we donote the set of height one prime ideals of a Krull domain.

  • PDF

On SF-Rings and Semisimple Rings

  • Lee, Kyoung Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 1994
  • In this note, we study conditions under which SF-rings are semi-simple. We prove that left SF-rings are semisimple for each of the following classes of rings: (1) left non-singular rings of finite rank; (2) rings whose maximal left ideals are finitely generated; (3) rings of pure global dimension zero and (4) rings which is pure-split. Also it is shown that left SF-rings without zero-divisors are semisimple.

  • PDF

The Fuzzy Jacobson Radical of a κ-Semiring

  • Kim, Chang-Bum
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.423-429
    • /
    • 2007
  • We define and study the fuzzy Jacobson radical of a ${\kappa}$-semiring. Also it is shown that the Jacobson radical of the quotient semiring R/FJR(R) of a ${\kappa}$-semiring by the fuzzy Jacobson radical FJR(R) is semisimple. And the algebraic properties of the fuzzy ideals FJR(R) and FJR(S) under a homomorphism from R onto S are also discussed.

On Idempotent Reflexive Rings

  • Kim, Jin Yong;Baik, Jong Uk
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.597-601
    • /
    • 2006
  • We introduce in this paper the concept of idempotent reflexive right ideals and concern with rings containing an injective maximal right ideal. Some known results for reflexive rings and right HI-rings can be extended to idempotent reflexive rings. As applications, we are able to give a new characterization of regular right self-injective rings with nonzero socle and extend a known result for right weakly regular rings.

  • PDF

GRADED w-NOETHERIAN MODULES OVER GRADED RINGS

  • Wu, Xiaoying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1319-1334
    • /
    • 2020
  • In this paper, we study the basic theory of the category of graded w-Noetherian modules over a graded ring R. Some elementary concepts, such as w-envelope of graded modules, graded w-Noetherian rings and so on, are introduced. It is shown that: (1) A graded domain R is graded w-Noetherian if and only if Rg𝔪 is a graded Noetherian ring for any gr-maximal w-ideal m of R, and there are only finite numbers of gr-maximal w-ideals including a for any nonzero homogeneous element a. (2) Let R be a strongly graded ring. Then R is a graded w-Noetherian ring if and only if Re is a w-Noetherian ring. (3) Let R be a graded w-Noetherian domain and let a ∈ R be a homogeneous element. Suppose 𝖕 is a minimal graded prime ideal of (a). Then the graded height of the graded prime ideal 𝖕 is at most 1.

COHEN-MACAULAY MODULES OVER NOETHERIAN LOCAL RINGS

  • Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.373-386
    • /
    • 2014
  • Let (R,m) be a commutative Noetherian local ring. In this paper we show that a finitely generated R-module M of dimension d is Cohen-Macaulay if and only if there exists a proper ideal I of R such that depth($M/I^nM$) = d for $n{\gg}0$. Also we show that, if dim(R) = d and $I_1{\subset}\;{\cdots}\;{\subset}I_n$ is a chain of ideals of R such that $R/I_k$ is maximal Cohen-Macaulay for all k, then $n{\leq}{\ell}_R(R/(a_1,{\ldots},a_d)R)$ for every system of parameters $a1,{\ldots},a_d$ of R. Also, in the case where dim(R) = 2, we prove that the ideal transform $D_m(R/p)$ is minimax balanced big Cohen-Macaulay, for every $p{\in}Assh_R$(R), and we give some equivalent conditions for this ideal transform being maximal Cohen-Macaulay.

THE MULTILEVEL SECURITY PROBLEM OVER CLASS SEMIGROUPS OF IMAGINARY QUADRATIC NON-MAXIMAL ORDERS

  • KIM, YONGTAE
    • Honam Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.185-196
    • /
    • 2006
  • A scheme based on the cryptography for enforcing multilevel security in a system where hierarchy is represented by a partially ordered set was first introduced by Akl et al. But the key generation algorithm of Akl et al. is infeasible when there is a large number of users. In 1985, MacKinnon et al. proposed a paper containing a condition which prevents cooperative attacks and optimizes the assignment in order to overcome this shortage. In 2005, Kim et al. proposed key management systems for multilevel security using one-way hash function, RSA algorithm, Poset dimension and Clifford semigroup in the context of modern cryptography. In particular, the key management system using Clifford semigroup of imaginary quadratic non-maximal orders is based on the fact that the computation of a key ideal $K_0$ from an ideal $EK_0$ seems to be difficult unless E is equivalent to O. We, in this paper, show that computing preimages under the bonding homomorphism is not difficult, and that the multilevel cryptosystem based on the Clifford semigroup is insecure and improper to the key management system.

  • PDF

QUOTIENT RINGS INDUCED VIA FUZZY IDEALS

  • Liu, Yong-Lin;Meng, Jie;Xin, Xiao-Long
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.855-867
    • /
    • 2001
  • This note we give a construction of a quotient ring $R/{\mu}$ induced via a fuzzy ideal ${\mu}$ in a ring R. The Fuzzy First, Second and Third Isomorphism Theorems are established. For some applications of this construction of quotient rings, we show that if ${\mu}$ is a fuzzy ideal of a commutative ring R, then $\mu$ is prime (resp. $R/{\mu}$ is a field, every zero divisor in $R/{\mu}$ is nilpotent). Moreover we give a simpler characterization of fuzzy maximal ideal of a ring.

On Partitioning and Subtractive Ideals of Ternary Semirings

  • Chaudhari, Jaiprakash Ninu;Ingale, Kunal Julal
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.69-76
    • /
    • 2011
  • In this paper, we introduce a partitioning ideal of a ternary semiring which is useful to develop the quotient structure of ternary semiring. Indeed we prove : 1) The quotient ternary semiring S/$I_{(Q)}$ is essentially independent of choice of Q. 2) If f : S ${\rightarrow}$ S' is a maximal ternary semiring homomorphism, then S/ker $f_{(Q)}$ ${\cong}$ S'. 3) Every partitioning ideal is subtractive. 4) Let I be a Q-ideal of a ternary semiring S. Then A is a subtractive ideal of S with I ${\subseteq}$ A if and only if A/$I_{(Q{\cap}A)}$ = {q + I : q ${\in}$ Q ${\cap}$ A} is a subtractive idea of S/$I_{(Q)}$.