KYUNGPOOK Math. J. 46(2006), 597-601

On Idempotent Reflexive Rings

JIN YONG KIM Department of Mathematics and Institute of Natural Sciences, Kyung Hee University, Suwon 449-701, Korea e-mail: jykim@khu.ac.kr

JONG UK BAIK Department of Mathematics, Kyung Hee University, Seoul 130-701, Korea e-mail: jubag@khu.ac.kr

ABSTRACT. We introduce in this paper the concept of idempotent reflexive right ideals and concern with rings containing an injective maximal right ideal. Some known results for reflexive rings and right HI-rings can be extended to idempotent reflexive rings. As applications, we are able to give a new characterization of regular right self-injective rings with nonzero socle and extend a known result for right weakly regular rings.

Throughout this paper, R denotes an associative ring not necessarily with unity unless otherwise stated. A right ideal I is said to be *reflexive* [2] if $aRb \subseteq I$ implies $bRa \subseteq I$ for $a, b \in R$. A ring R is called *reflexive* if 0 is a reflexive ideal. In this paper we define an idempotent reflexive right ideal which is a nontrivial generalization of a reflexive right ideal. Some known results of Mason [2] are extended. For an idempotent reflexive ring R with unity, we prove that if R contains an injective maximal right ideal, then R is right self-injective. As a byproduct of this result, we obtain a new characterization of regular right self-injective rings with nonzero socle. This characterization is then used to prove that an idempotent reflexive right HI-ring is semisimple Artinian. Consequently we extend nontrivially a result in [7]. Moreover we show that if R is an idempotent reflexive ring with unity and every simple singular right R-module is p-injective then R is a right weakly regular ring.

Definition 1. A right ideal I is called *idempotent reflexive* if $aRe \subseteq I$ if and only if $eRa \subseteq I$ for $a, e = e^2 \in R$. We say that R is an *idempotent reflexive ring* when 0 is an idempotent reflexive ideal.

Note that any prime ideal is reflexive. Since an intersection of reflexive right ideals is reflexive, all semiprime ideals are reflexive. Recall that a ring R is called *abelian* if every idempotents in R is central. Obviously an abelian ring with unity is

Received September 14, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 16D50, 16E50.

Key words and phrases: idempotent reflexive ring, HI-ring, (von Neumann) regular right self-injective ring, p-injective module, weakly regular ring.

an idempotent reflexive ring. We say a ring R with unity satisfies condition (SI) [5] if the left annihilator $\ell(x)$, is a two-sided ideal for each $x \in R$, equivalently if ab = 0then aRb = 0 for $a, b \in R$. Note that any ring satisfying condition (SI) is abelian. Also observe that if R has unity, then R is a reflexive ring satisfying condition (SI) if and only if $\ell(x) = r(x)$ for each $x \in R$, where r(x) is the right annihilator of x. The following example is essentially due to Birkenmeier, Kim and Park [1, Example 2.8]

Example 2. There is an idempotent reflexive ring which is not reflexive.

Assume that $F\{X,Y\}$ is the free algebra over a field F generated by X and Y, and $\langle YX \rangle$ is the two-sided ideal of $F\{X,Y\}$ generated by the element YX. Let $R = F\{X,Y\}/\langle YX \rangle$. Put $x = X + \langle YX \rangle$ and $y = Y + \langle YX \rangle$ in R. Then $R = \{f_0(x) + f_1(x)y + \cdots + f_n(x)y^n | n = 0, 1, 2, \cdots, \text{ and } f_i(x) \in F[x]\}$, the polynomial ring such that yx = 0. Now let α, β be nonzero elements in R satisfying $\alpha\beta = 0$. Say $\alpha = f_0(x) + f_1(x)y + \cdots + f_n(x)y^n$ and $\beta = g_0(x) + g_1(x)y + \cdots + g_m(x)y^m$ with $f_n(x) \neq 0$ and $g_m(x) \neq 0$.

- **Case 1:** $f_0(x) = 0$. Then $\alpha x \beta = f_0(x) x \beta = 0$. From the fact that yg(x) = g(0)y for $g(x) \in F[x]$, it can be checked that $g_0(0) = g_1(0) = \cdots = g_m(0) = 0$. Thus $\alpha y \beta = \alpha(g_0(0) + g_1(0)y + \cdots + g_m(0)y^m)y = 0$. Thus $\alpha R \beta = 0$.
- **Case 2:** $g_0(x) = 0$. Of course we may assume that $f_0(x) \neq 0$. In this case, it also can be checked that $g_1(x) = g_2(x) = \cdots = g_m(x) = 0$, a contradiction to $g_m(x) \neq 0$.

From these we have $\alpha\beta = 0$ implies $\alpha R\beta = 0$ for $\alpha, \beta \in R$. So it is easily checked that R is an abelian ring. Hence R is an idempotent reflexive ring.

Proposition 3. If R is an idempotent reflexive ring and e is an idempotent of R, then the following are equivalent.

- (1) eR is an idempotent reflexive right ideal.
- (2) eR is a two-sided ideal.
- (3) e is central.

Proof. (1) \Rightarrow (2): Let $i \in eR = I$. Then for some $x \in R$, we have $i = ex \in R^2 I$ and hence $I \subseteq R^2 I$. Since eR is an idempotent reflexive right ideal and $eRy \subseteq eR$ for any $y \in R$, we have $yRe \subseteq eR$. Thus $R^2e \subseteq eR$. Hence $I = R^2I$. For any $a \in R$ and $i \in I$, we have that $ai = aex = aeex \in R^2I$. Therefore I = eR is a two-sided ideal.

 $(2) \Rightarrow (3)$: For any $x \in R$, $xe = xee \in x(eR) \subseteq eR$. Thus xe = er for some $r \in R$. Hence exe = er = xe. Also for any $s \in R$, we have that sexe = sxe. Thus (se - s)xe = 0, so (se - s)Re = 0. Since R is idempotent reflexive, eR(se - s) = 0. Thus ese = es for any $s \in R$. Therefore we have ex = xe for any $x \in R$.

 $(3) \Rightarrow (1)$: Assume that $xRf \subseteq eR$ where f is an idempotent of R. For any $r \in R$, it follows that xrf = ey for some $y \in R$. Thus exrf = ey = xrf, so

(ex - x)rf = 0. Since R is idempotent reflexive and (ex - x)Rf = 0, we have fR(ex - x) = 0. Hence frex = frx. Now e is central, so $frx \in eR$. Thus $fRx \subseteq eR$ and hence eR is idempotent reflexive.

Corollary 4. If every principal right ideal of R is idempotent reflexive, then R is abelian.

In general the existence of an injective maximal right ideal in a ring R can not guarantee the right self-injectivity of R. But we have the following result.

Proposition 5. Let R be an idempotent reflexive ring with unity. If R contains an injective maximal right ideal, then R is right self-injective.

Proof. Let M be an injective maximal right ideal of R. Then $R = M \oplus N$, where N is a minimal right ideal. Hence we have M = eR and N = (1 - e)Rfor some $0 \neq e = e^2 \in R$. If NM = 0, then we have (1 - e)Re = 0. Since R is idempotent reflexive, eR(1 - e) = 0. So e is central. Hence we can write $R = M \oplus N = Re \oplus R(1 - e)$. Thus the left module $_R(R/M)$ is projective (hence flat). By a result of Ramanurthi [4], the right module $(R/M)_R$ is injective. Hence N_R is injective. If $NM \neq 0$, then NM = N. So there exists $b \in N$ such that $bM \neq 0$, whence N = bM. Let $f: M \longrightarrow N$ be the map defined by f(m) = bm for each $m \in M$. Then f is an epimorphism. Since the right module N_R is projective and $M/\ker f \simeq N$, we have $M \simeq \ker f \oplus M/\ker f \simeq \ker f \oplus N$ as right R-modules. Thus N_R is injective. At any rate, N is injective. Hence $R = M \oplus N$ is right self-injective. \Box

Corollary 6. Let R be a semiprime (or an abelian) ring with unity. If R contains an injective maximal right ideal, then R is right self-injective.

Recall that a ring R is called a right pp if every principal right ideal of R is projective. As an application of Proposition 5, we have the following result.

Corollary 7. For a ring R with unity, the following are equivalent.

- (1) R is a regular right self-injective ring with $Soc(R_R) \neq 0$, where $Soc(R_R)$ is the right socle of R.
- (2) R is an idempotent reflexive right pp-ring containing an injective maximal right ideal.

Proof. (1) \Rightarrow (2): Since *R* is a regular ring, *R* is an idempotent reflexive right *pp*-ring. If every maximal right ideal of *R* is essential, then $Soc(R_R)$ is contained in the Jacobson radical of *R*, which is absurd. So there is a maximal right ideal *M* of *R* which is not essential. Therefore *M* is a direct summand of *R*. Since *R* is right self-injective, *M* is an injective right ideal.

 $(2) \Rightarrow (1)$: By Proposition 5, R is right self-injective. Hence R is regular because R is right pp. Also we have $Soc(R_R) \neq 0$ since there is an injective maximal right ideal.

By [7], a ring R is called a *right HI-ring* if R is a right hereditary ring containing an injective maximal right ideal. Osofsky [3] proves that a right self-injective right hereditary ring is semisimple Artinian.

The next corollary extends Theorem 8 in [7].

Corollary 8. For a ring R with unity, the following statements are equivalent.

- (1) R is semisimple Artinian.
- (2) R is an idempotent reflexive right HI-ring.

Proof. $(1) \Rightarrow (2)$: Obvious.

 $(2) \Rightarrow (1)$: Proposition 5 and Osofsky's theorem in [3].

Recall that a right R-module M is called to be *right p-injective* if every right R-homomorphism from a principal right ideal aR to M extends to one from R to M. Ming [6] proved that if R is a semiprime ring whose simple singular right R-module is p-injective then R is a right weakly regular ring. We extend this result as follows.

Lemma 9. If every simple singular right R-module is p-injective, then for every element $a \in R$, there exists a right ideal K such that $R = (RaR + r(a)) \oplus K$. Proof. See [6, Lemma 1].

Proposition 10. Let R be an idempotent reflexive ring with unity. If every simple singular right R-module is p-injective, then R is a right weakly regular ring.

Proof. For every $a \in R$, by lemma 9, we have $R = (RaR + r(a)) \oplus K$ for some right ideal K. Let K = eR where $e = e^2 \in R$. Then $eRaR = KRaR \subseteq RaR \cap K = 0$, hence eRa = 0. Thus aRe = 0 since R is idempotent reflexive. Hence $K \subseteq ReR \subseteq r(a)$. Thus K = 0. Therefore R = RaR + r(a) for every $a \in R$. Hence R is a right weakly regular ring.

Corollary 11. Let R be a semiprime (or an abelian) ring with unity. If every simple singular right R-module is p-injective, then R is right weakly regular.

Acknowledgements. This work was supported by a Grant from the Kyung Hee University in 2005.

References

- G. F. Birkenmeier, J. Y. Kim and J. K. Park, A characterization of minimal prime ideals, Glasgow Math. J., 40(1998), 223-236.
- [2] G. Mason, *Reflexive ideals*, Comm. Algebra, 9(17)(1981), 1709-1724.
- B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math., 14(1964), 645-650.

600

- [4] V. S. Ramamurthi, On the injective and flatness of certain cyclic modules, Proc. Amer. Math. Soc., 48(1975), 21-25.
- [5] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc., 184(1973), 43-60.
- [6] R. Yue Chi Ming, On von Neumann regular rings II, Math. Scand., 39(1976), 167-170.
- [7] J. Zhang and X. Du, Hereditary rings containing an injective maximal left ideal, Comm. Algebra, 21(1993), 4473-4479.