Students not only learn mathematics knowledge, but also have the capability of mathematical creativity. The latter has been thought an important task in mathematics education by more and more mathematicians and mathematics educators. In this paper, mathematicians' methods of creating mathematics are presented. Then, the paper elaborates on how these methods can be utilized to enhance mathematical creativity in the schools.
Journal of Elementary Mathematics Education in Korea
/
v.16
no.1
/
pp.39-61
/
2012
Mathematical creativity is essential in school mathematics and mathematics curriculum and ensures the growth of mathematical ability. Therefore mathematics educators try to develop students' creativity via mathematics education for a long time. In special, 2011 revised mathematics curriculum emphasizes mathematical creativity. Yet, it may seem like a vague characterization of mathematical creativity. Furthermore, it is needed to develop the methods for developing the mathematical creativity. So, the goal of this paper is to search for teaching and learning models for developing the mathematical creativity. For this, I discuss about issues of mathematical creativity and extract the factors of mathematical creativity. The factors of mathematical creativity are divided into cognitive factors, affective factors and attitude factors that become the factors of development of mathematical creativity in the mathematical instruction. And I develop 8-teaching and learning models for development of mathematical creativity based on the characters of mathematics and the most recent theories of mathematics education. These models make it crucial for students to develop the mathematical creativity and create the new mathematics in the future.
The present study examined the 7th national elementary school mathematics curriculum from a perspective of mathematical creativity. The study investigated to what extent the activities in the Pattern and Function lessons in the national elementary school mathematics textbooks promoted the development of mathematical creativity. The results indicated that the current elementary school mathematics curriculum was limited in many ways to promote the development of mathematical creativity. Regarding the activities in Pattern lessons, for example, most activities presented closed tasks involving finding and extending patterns. The lesson provided little opportunities to explore the relationships among various patterns, apply patterns to different situations, or create ones own patterns. In regard to the Function lessons, the majority of activities were about computing the rate. This showed that the function was taught from an operational perspective, not a relational perspective. It was unlikely that students would develop the basic understanding of function through the activities involving the computing the rate. Further, the lessons had students use exclusively the numbers in representing the function. Students were provided little opportunities to use various representation methods involving pictures or graphs, explore the strengths and limitations of various representation methods, or to choose more effective representation methods in particular contexts. In conclusion, the lesson activities in the current elementary school mathematics textbooks were unlikely to promote the development of mathematical creativity.
I wish to search for educational alternatives which improve students' mathematical creativity. As the first attempt for this, theories of general creativity and characters of mathematical creativity are discussed. And four factors( teacher variables. student variables, teaching and learning variables. environment variables) affecting mathematical creativity are analyzed. It is a educational well-known fact that students should think creatively and solve the problems for themselves. We postulate the fact that students' mathematical creativity can be developed. I think it is a mission and a duty for mathematics educators to develop the students' mathematical creativity fully. Mathematics educators should search for the methods which encourage the students to have mathematical creativity and should develop them.
This study sheds light on the importance of developing creativity in mathematics class by examining the theoretical base of creativity and its relationship to mathematics. The study also reviewed the realities of developing creativity in mathematics courses, and it observed and analyzed the processes in which students and teachers solve the mathematics problems. By doing so, the study examined creative abilities of both students and teachers and suggests what teachers can do to tap the potential of the student. The subjects of the study are two groups of students and one group of mathematics teachers. These groups were required to solve a particular problems. The grading was made based on the mathematical creativity factors. There were marked differences in the ways of the solutions between of the student groups and the teacher group. It was clear that the teachers\\` thinking was limited to routine approaches in solving the given problems. In particular, there was a serious gap in the area of originality. As can be seen from the problem analysis by groups, there was a meaningful difference between the creativity factors of students and those of teachers. This study presented research findings obtained from students who were guided to freely express their creativity under encouragement and concern of their teachers. Thus, teachers should make an effort to break from their routine thinking processes and fixed ideas. In addition, teaching methods and contents should emphasize on development of creativity. Such efforts will surely lead to an outcome that is beneficial to students.
The purpose of this study is to analyze manifestation examples and effects of group creativity in mathematical modeling and to discuss teaching and learning methods for group creativity. The following two points were examined from the theoretical background. First, we examined the possibility of group activity in mathematical modeling. Second, we examined the meaning and characteristics of group creativity. Six students in the second grade of high school participated in this study in two groups of three each. Mathematical modeling task was "What are your own strategies to prevent or cope with blackouts?". Unit of analysis was the observed types of interaction at each stage of mathematical modeling. Especially, it was confirmed that group creativity can be developed through repetitive occurrences of mutually complementary, conflict-based, metacognitive interactions. The conclusion is as follows. First, examples of mutually complementary interaction, conflict-based interaction, and metacognitive interaction were observed in the real-world inquiry and the factor-finding stage, the simplification stage, and the mathematical model derivation stage, respectively. And the positive effect of group creativity on mathematical modeling were confirmed. Second, example of non interaction was observed, and it was confirmed that there were limitations on students' interaction object and interaction participation, and teacher's failure on appropriate intervention. Third, as teaching learning methods for group creativity, we proposed students' role play and teachers' questioning in the direction of promoting interaction.
Cultivating mathematical creativity is one of the aims in the recently revised mathematics curricular. However, there have been lack of researches on how to nurture mathematical creativity for ordinary students. Perspective of Realistic Mathematics Education(RME), which pursues education of creative person as the ultimate goal of mathematics education, could be useful for developing principles and methods for cultivating mathematical creativity. This study reanalyzes RME from the points of view in mathematical creativity education. Major findings are followed. First, students should have opportunities for mathematical creation through mathematization, while seeking and creating certainty. Second, it is vital to begin with realistic contexts to guarantee mathematical creation by students, in which students can imagine or think. Third, students can create mathematics in realistic contexts by modelling. Fourth, students create the meaning of 'model of(MO)', which models the given context, the meaning of 'model for(MF)', which models formal mathematics. Then, students create MOs and MFs that are equivalent to the intial MO and MF given by textbook or teacher. Flexibility, fluency, and novelty could be employed to evaluate the MOs and the MFs created by students. Fifth, cultivation of mathematical creativity can be supported from development of local instructional theories by thought experiment, its application, and reflection. In conclusion, to employ the education model of cultivating mathematical creativity by RME drawn in this study could be reasonable when design mathematics lessons as well as mathematics curriculum to include mathematical creativity as one of goals.
Journal of Elementary Mathematics Education in Korea
/
v.17
no.3
/
pp.503-522
/
2013
In the 2009 new curriculum reform, where creativity is the key point, assessment methods for mathematical creativity is recommended. However, lessons for creativity are not carried out well in mathematics classes. One of the reasons for this is the lack of assessment methods for student's creativity and specific instructions on how teachers should evaluate their students using a written test. Therefore, in this paper, we propose a simple way to evaluate student's creativity by differentiating the student's solutions of the posed problems. For validation of the proposed method, we identified the properties of excellent problem solutions cited by both the students group and teachers group. A chi-square test was then carried out to compare any differences in frequency that each of the groups chose as an excellent solution as a result of the student's problem solving
The purpose of this study is to investigate the effects of solving multi-strategic mathematics problems on mathematical creativity and attitudes of the 6th grade students. For this study, the researchers conducted a survey of forty nine (26 students in experimental group and 23 students in comparative group) 6th graders of S elementary school in Seoul with 19 lessons. The experimental group solved the multi-strategic mathematics problems after learning mathematics through mathematical strategies, whereas the group of comparative students were taught general mathematics problem solving. The researchers conducted pre- and post- isomorphic mathematical creativity and mathematical attitudes of students. They examined the t-test between the pre- and post- scores of sub-elements of fluency, flexibility and creativity and attitudes of the students by the i-STATistics. The researchers obtained the following conclusions. First, solving multi-strategic mathematics problems has a positive impact on mathematical creativity of the students. After learning solving the multi-strategic mathematics problems, the scores of mathematical creativity of the 6th grade elementary students were increased. Second, learning solving the multi-strategy mathematics problems impact the interest, value, will and efficacy factors in the mathematical attitudes of the students. However, no significant effect was found in the areas of desire for recognition and motivation. The researchers suggested that, by expanding the academic year and the number of people in the study, it is necessary to verify how mathematics learning through multi-strategic mathematics problem-solving affects mathematical creativity and mathematical attitudes, and to verify the effectiveness through long-term research, including qualitative research methods such as in-depth interviews and observations of students' solving problems.
The purpose of this study is to investigate how students' mathematical creativity changes through problem-solving instruction using problem-posing for elementary school students and to explore instructional methods to improve students' mathematical creativity in school curriculum. In this study, nonequivalent control group design was adopted, and the followings are main results. First, problem-solving lessons with problem-posing had a significant effect on students' mathematical creativity, and all three factors of mathematical creativity(fluency, flexibility, originality) were also significant. Second, the lessons showed meaningful results for all upper, middle, and lower groups of pupils according to the level of mathematical creativity. When analyzing the effects of sub-factors of mathematical creativity, there was no significant effect on fluency in the upper and middle groups. Based on the results, we suggest followings: First, there is a need for a systematic guidance plan that combines problem-solving and problem-posing, Second, a long-term lesson plan to help students cultivate novel mathematical problem-solving ability through insights. Third, research on teaching and learning methods that can improve mathematical creativity even for students with relatively high mathematical creativity is necessary. Lastly, various student-centered activities in math classes are important to enhance creativity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.