DOI QR코드

DOI QR Code

Using Mathematician's Creativity Methods in Mathematics Education

  • Received : 2011.05.14
  • Accepted : 2012.06.20
  • Published : 2012.06.30

Abstract

Students not only learn mathematics knowledge, but also have the capability of mathematical creativity. The latter has been thought an important task in mathematics education by more and more mathematicians and mathematics educators. In this paper, mathematicians' methods of creating mathematics are presented. Then, the paper elaborates on how these methods can be utilized to enhance mathematical creativity in the schools.

Keywords

References

  1. Barbeau, E. (1985). Creativity in Mathematics. Interchange 16(1), 62-69. ERIC EJ319283 https://doi.org/10.1007/BF01187592
  2. Burton, L. (1999). Why is intuition so important to mathematicians but missing from mathematics education? For the Learning of Mathematics 19(3), 27-32. ME 2001a.00098 ERIC EJ607167
  3. Campos, D (2009). Imagination, concentration, and generalization: Peirce on the reasoning abilities of the mathematics. Transactions of the Charles S. Peirce Society 45(2), 135-156. https://doi.org/10.2979/tra.2009.45.2.135
  4. Crespo, S. (2003). Learning to pose mathematical problems: Exploring changes in preservice teachers' practices. Educational Studies in Mathematics 52(3), 243-270. ME 2003d.03183 ERIC EJ675401 https://doi.org/10.1023/A:1024364304664
  5. Ervynck, G. (1991). Mathematical creativity. In: D. Tall (Ed.), Advanced mathematical thinking (pp. 42-53). Dordrecht: Kluwer Academic Publishers. ME 1993b.02231
  6. Glas, E. (2002). Klein's Model of Mathematical Creativity. Sci. Educ. 11(1), 95-104. ME 2002b.01014 https://doi.org/10.1023/A:1013075819948
  7. Hadamard, J. W. (1945). Essay on the psychology of invention in themathematical field. Princeton: Princeton University Press.
  8. Haylock, D.W. (1987). A framework for assessing mathematical creativity in school children. Educ. Stud. Math. 18(1), 59-74. ME 1989c.00290 ERIC EJ348107 https://doi.org/10.1007/BF00367914
  9. Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children (J. Kilpatrick, I. Wirszup (Eds.) & J. Teller (Trans.)). Chicago: University of Chicago Press.
  10. Nicol, C. (1999). Learning to teach mathematics: questioning, listening, and responding. Educ. Stud. Math. 37(1), 45-66. ME 1999e.03112 ERIC EJ590281
  11. Pehkonen, E. (1997). The state-of-art in mathematical creativity. ZDM, Zentralbl. Didakt. Math. 29(3), 63-67. ME 1997e.02709 https://doi.org/10.1007/s11858-997-0001-z
  12. Polya, G. (1954). Mathematics and plausible reasoning. Vol. 2: Induction and analogy in mathematics. Princeton, NJ: Princeton University Press. ME 1977a.00026
  13. Silver, E. A.; Mamona-Downs, J. & Leung, S. S. (1996). Posing mathematical problems: An exploratory study. J. Res. Math. Educ. 27(3), 293-309. ME 1997a.00266 ERIC EJ525137 https://doi.org/10.2307/749366
  14. Sriraman, B. (2009). The characteristics of mathematical creativity. ZMD 41(1-2), 13-27. ME 2009f.00368
  15. Stein, M. K.; Smith, M. S.; Henningsen, M. A. & Silver, E. (2000). Implementing standards-based mathematics instruction: A casebook for professional development. New York: Teachers College Press. ME 2000e.03200 ERIC ED442659
  16. Sternberg, R. J. (Ed.) (2000). Handbook of creativity. Cambridge University Press.
  17. Stevenson, H. W. & Stigler, J. W. (1992). The learning gap. New York: Summit Book.
  18. Zhang, X. (2011). Illuminations of Mathematician's Creativity Methods in Mathematics Education. In: C. Cho, S. Lee & Y. Choe (Eds.), Proceedings of the 16th International Seminar of Mathematics Education on Creativity Development and Gifted Students at Chungnam Nat'l Univ., Yuseong-gu, Daejeon 305-764, Korea; August 12, 2011 (pp. 317-327). Seoul: Korean Society of Mathematics Education