• Title/Summary/Keyword: mathematical proof

Search Result 546, Processing Time 0.036 seconds

On the ring of integers of cyclotomic function fields

  • Bae, Sunghan;Hahn, Sang-Geun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.153-163
    • /
    • 1992
  • Carlitz module is used to study abelian extensions of K=$F_{q}$(T). In number theory every abelian etension of Q is contained in a cyclotomic field. Similarly every abelian extension of $F_{q}$(T) with some condition on .inf. is contained in a cyclotomic function field. Hence the study of cyclotomic function fields in analogy with cyclotomic fields is an important subject in number theory. Much are known in this direction such as ring of integers, class groups and units ([G], [G-R]). In this article we are concerned with the ring of integers in a cyclotomic function field. In [G], it is shown that the ring of integers is generated by a primitive root of the Carlitz module using the ramification theory and localization. Here we will give another proof, which is rather elementary and explicit, of this fact following the methods in [W].[W].

  • PDF

Some properties of the set of schwarzians of conformal functions

  • Jong Su An;Tai Sung Song
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.665-672
    • /
    • 1996
  • Let U denote the set of all Schwarzian derivatives $S_f$ of conformal function f in the unit disk D. We show that if $S_f$ is a local extreme point of U, then f cannot omit an open set. We also show that if $S_f \in U$ is an extreme point of the closed convex hull $\bar{co}U$ of U, then f cannot omit a set of positive area. The proof of this uses Nguyen's theorem.

  • PDF

ON THE FLUCTUATION IN THE RANDOM ASSIGNMENT PROBLEM

  • Lee, Sung-Chul;Su, Zhong-Gen
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.321-330
    • /
    • 2002
  • Consider the random assignment (or bipartite matching) problem with iid uniform edge costs t(i, j). Let $A_{n}$ be the optimal assignment cost. Just recently does Aldous [2] give a rigorous proof that E $A_{n}$ longrightarrowζ(2). In this paper we establish the upper and lower bounds for Var $A_{n}$ , i.e., there exist two strictly positive but finite constants $C_1$ and $C_2$ such athat $C_1$ $n^{(-5}$2)/ (log n)$^{(-3}$2)/ $\leq$ Var $A_{n}$ $\leq$ $C_2$ $n^{-1}$ (log n)$^2$.EX>.

LIMIT RELATIVE CATEGORY THEORY APPLIED TO THE CRITICAL POINT THEORY

  • Jung, Tack-Sun;Choi, Q-Heung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.311-319
    • /
    • 2009
  • Let H be a Hilbert space which is the direct sum of five closed subspaces $X_0,\;X_1,\;X_2,\;X_3$ and $X_4$ with $X_1,\;X_2,\;X_3$ of finite dimension. Let J be a $C^{1,1}$ functional defined on H with J(0) = 0. We show the existence of at least four nontrivial critical points when the sublevels of J (the torus with three holes and sphere) link and the functional J satisfies sup-inf variational inequality on the linking subspaces, and the functional J satisfies $(P.S.)^*_c$ condition and $f|X_0{\otimes}X_4$ has no critical point with level c. For the proof of main theorem we use the nonsmooth version of the classical deformation lemma and the limit relative category theory.

AN EXTENSION OF REDUCTION FORMULA FOR LITTLEWOOD-RICHARDSON COEFFICIENTS

  • Cho, Soo-Jin;Jung, Eun-Kyoung;Moon, Dong-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1197-1222
    • /
    • 2010
  • There is a well-known classical reduction formula by Griffiths and Harris for Littlewood-Richardson coefficients, which reduces one part from each partition. In this article, we consider an extension of the reduction formula reducing two parts from each partition. This extension is a special case of the factorization theorem of Littlewood-Richardson coefficients by King, Tollu, and Toumazet (the KTT theorem). This case of the KTT factorization theorem is of particular interest, because, in this case, the KTT theorem is simply a reduction formula reducing two parts from each partition. A bijective proof using tableaux of this reduction formula is given in this paper while the KTT theorem is proved using hives.

SETS AND VALUE SHARING OF q-DIFFERENCES OF MEROMORPHIC FUNCTIONS

  • Qi, Xiao-Guang;Yang, Lian-Zhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.731-745
    • /
    • 2013
  • In this paper, we investigate uniqueness problems of certain types of $q$-difference polynomials, which improve some results in [20]. However, our proof is different from that in [20]. Moreover, we obtain a uniqueness result in the case where $q$-differences of two entire functions share values as well. This research also shows that there exist two sets, such that for a zero-order non-constant meromorphic function $f$ and a non-zero complex constant $q$, $E(S_j,f)=E(S_j,{\Delta}_qf)$ for $j=1,2$ imply $f(z)=t{\Delta}_qf$, where $t^n=1$. This gives a partial answer to a question of Gross concerning a zero order meromorphic function $f(z)$ and $t{\Delta}_qf$.

BOUNDS FOR RADII OF CONVEXITY OF SOME q-BESSEL FUNCTIONS

  • Aktas, Ibrahim;Orhan, Halit
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.355-369
    • /
    • 2020
  • In the present investigation, by applying two different normalizations of the Jackson's second and third q-Bessel functions tight lower and upper bounds for the radii of convexity of the same functions are obtained. In addition, it was shown that these radii obtained are solutions of some transcendental equations. The known Euler-Rayleigh inequalities are intensively used in the proof of main results. Also, the Laguerre-Pólya class of real entire functions plays an important role in this work.

STRONG τ-MONOLITHICITY AND FRECHET-URYSOHN PROPERTIES ON Cp(X)

  • Kim, Jun-Hui;Cho, Myung-Hyun
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.233-237
    • /
    • 2009
  • In this paper, we show that: (1) every strongly ${\omega}$-monolithic space X with countable fan-tightness is Fr$\'{e}$chet-Urysohn; (2) a direct proof of that X is Lindel$\"{o}$f when $C_p$(X) is Fr$\'{e}$chet-Urysohn; and (3) X is Lindel$\"{o}$f when X is paraLindel$\"{o}$f and $C_p$(X) is AP. (3) is a generalization of the result of [8]. And we give two questions related to Fr$\'{e}$chet-Urysohn and AP properties on $C_p$(X).

NOTE ON THE CLASSICAL WATSON'S THEOREM FOR THE SERIES 3F2

  • Choi, Junesang;Agarwal, P.
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.701-706
    • /
    • 2013
  • Summation theorems for hypergeometric series $_2F_1$ and generalized hypergeometric series $_pF_q$ play important roles in themselves and their diverse applications. Some summation theorems for $_2F_1$ and $_pF_q$ have been established in several or many ways. Here we give a proof of Watson's classical summation theorem for the series $_3F_2$(1) by following the same lines used by Rakha [7] except for the last step in which we applied an integral formula introduced by Choi et al. [3].

A Re-Examination of the Area formula of triangles as an invariant of Euclidean geometry (유클리드 기하의 고유한 성질로서의 삼각형 넓이 공식에 대한 재음미)

  • Choi Young-Gi;Hong Gap-Ju
    • The Mathematical Education
    • /
    • v.45 no.3 s.114
    • /
    • pp.367-373
    • /
    • 2006
  • This study suggests that it is necessary to prove that the values of three areas of a triangle, which are obtained by the multiplication of the respective base and its corresponding height, are the same. It also seeks to deeply understand the meaning of Area formula of triangles by exploring some questions raised in the analysis of the proof. Area formula of triangles expresses the invariance of congruence and additivity on one hand, and the uniqueness of parallel line, one of the characteristics of Euclidean geometry, on the other. This discussion can be applied to introducing and developing exploratory learning on area in that it revisits the ordinary thinking on area.

  • PDF