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AN EXTENSION OF REDUCTION FORMULA FOR
LITTLEWOOD-RICHARDSON COEFFICIENTS

Soojin Cho, Eun-Kyoung Jung, and Dongho Moon

Abstract. There is a well-known classical reduction formula by Griffiths
and Harris for Littlewood-Richardson coefficients, which reduces one part
from each partition. In this article, we consider an extension of the re-
duction formula reducing two parts from each partition. This extension
is a special case of the factorization theorem of Littlewood-Richardson
coefficients by King, Tollu, and Toumazet (the KTT theorem). This case
of the KTT factorization theorem is of particular interest, because, in this
case, the KTT theorem is simply a reduction formula reducing two parts
from each partition. A bijective proof using tableaux of this reduction
formula is given in this paper while the KTT theorem is proved using
hives.

0. Introduction

Littlewood-Richardson coefficients cν
λµ are important in many fields of math-

ematics. They count the number of column strict (skew) tableaux on the shape
ν/λ of content µ that satisfy a certain condition on the word derived from each
tableau. We call such a tableau a Littlewood-Richardson tableau. They explain
the multiplication rule of Schur functions;

sλ · sµ =
∑

ν

cν
λµsν

and the tensor product rule of irreducible polynomial representations of the
general linear group GLn(C);

V (λ)⊗ V (µ) =
⊕

ν

cν
λµ V (ν) .
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They also appear in the Schubert calculus of Grassmannians as structural con-
stants of the cohomology ring;

σλ · σµ =
∑

ν

cν
λµσν ,

where σλ is the Schubert class in the cohomology ring of a Grassmannian, in-
dexed by the partition λ. In [10], P. Griffiths and J. Harris used the inclusion
map of the n-dimensional space into the (n + 1)-dimensional space to obtain
a reduction formula for structural constants by reducing one part from each
partition. A combinatorial bijective proof of this classical reduction formula
using tableaux, the standard machinery to compute Littlewood-Richardson co-
efficients, is obtained in [3] (see also [5]).

Recently, inspired by the Saturation Theorem by A. Knutson and T. Tao
[16], and the properties of puzzles, introduced by Knutson et al., which serve
as another model of Littlewood-Richardson coefficients [17], King, Tollu, and
Toumazet observed various properties of Littlewood-Richardson coefficients
and their generating functions. They made several conjectures on them [14].
One of them is on the factorization of Littlewood-Richardson coefficients and
it has been proved by themselves [15]. In this article, we call this the KTT
theorem for short. Roughly speaking, the theorem states that if cν

λµ > 0 and
any of Horn’s inequalities is an equality, then cν

λµ can be written as a product
of two Littlewood-Richardson coefficients indexed by certain subpartitions of
λ, µ, ν, respectively. Note that Horn’s inequalities give necessary and sufficient
conditions for cν

λµ to be non-zero (see [8], for example).
In [6], we observed that if the given index sets in the theorem have cardinality

1, 2, (n − 1) or (n − 2), then the KTT theorem gives a reduction formula of
Littlewood-Richardson coefficients because there exists a unique Littlewood-
Richardson tableau, if there is, when the length of partitions are at most 2.
We also observed that it is the classical reduction formula when the size of
index sets are (n − 1). The case when the cardinality of the index sets is
(n − 2) can be realized as an extension of the classical reduction formula by
Griffiths and Harris since we delete two parts from each partition and still get
the same Littlewood-Richardson coefficient. This reduction formula ((n − 2)
case of the KTT theorem) is not obtained by merely applying the classical
reduction formula twice though.

In this article, we provide a combinatorial proof of this reduction formula
similar to the one given by the authors in [3] for the classical reduction for-
mula. The ingredients of the proof in this article are different from those of the
classical reduction formula; Proposition 2.8 shows the difficulty to remove two
parts while maintaining equality of Littlewood-Richardson coefficients. More-
over, we exploit a nice new equivalent condition, given in Lemma 3.13, for a
reverse row word of a tableau to be a lattice word, and we complete our proof
of the reduction formula.
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The work presented in this paper began when the authors realized the clas-
sical reduction formula in [10] (and [3]) is a special case of the KTT conjecture
in [14], which is the KTT theorem now. Our proof in [3] of the classical re-
duction formula is purely combinatorial using tableaux theory. That leads us
to attempt to prove some special cases of the conjecture combinatorially using
tableaux, even though the original conjecture by King, Tollu, and Toumazet
was motivated by the hive and puzzle models of Littlewood-Richardson coef-
ficients recently developed in [16], and eventually was proved using hives and
puzzles ([15]). Our aim is achieved in the works presented here and [4], carrying
out challenging and technical proofs. While preparing the manuscript of this
paper, the authors acknowledged King, Tollu, and Toumazet for proving their
conjecture using hives and puzzles [15].

We state the classical reduction formula and the KTT theorem and introduce
necessary terminologies in Section 1. In Section 2, we provide an algorithm to
obtain a combinatorial proof of the (extended) reduction formula. We prove
that our algorithm is a well defined bijection in Section 3. In the appendix, we
will see how our main idea can be translated into the language of hives.

1. Preliminaries, notations and terminologies

A partition λ = (λ1, λ2, . . . ) is a nonincreasing sequence of nonnegative
integers with finite number of positive numbers. The size of λ is defined as
|λ| =

∑
i λi and the length of λ, denoted by `(λ), is defined as the number of

positive numbers in λ.
The Young diagram of a partition λ is a left-justified array of boxes with λi

boxes in its ith row. For a given partition λ, λ̃ indicates the conjugate of λ,
whose diagram is obtained by interchanging rows and columns of that of λ. A
tableau, of shape λ, is a filling of a Young diagram of λ that is weakly increasing
across each row and strictly increasing down each column. For two partitions
λ = (λ1, λ2, . . .) and ν = (ν1, ν2, . . .), we write λ ⊆ ν, if λi ≤ νi for all i. For
partitions λ and ν with λ ⊆ ν, the skew diagram of shape ν/λ is the diagram
consisting of boxes of ν which are not the boxes of λ. A skew tableau of shape
ν/λ with content µ = (µ1, µ2, . . .) is a filling of boxes of a skew diagram ν/λ
with µi i’s, where entries are weakly increasing in rows and strictly increasing
in columns. The reverse row word of a skew tableau T , denoted by w(T ), is
the word obtained by reading the entries of T from right to left and top to
bottom. A word w = x1 · · ·xr is called a lattice word if, for any s ≤ r and i,
x1 · · ·xs contains at least as many i’s as it contains (i + 1)’s.

Definition 1.1. A skew tableau T is a Littlewood-Richardson skew tableau
(LR-tableau) if its reverse row word w(T ) is a lattice word.

There are several ways to define Littlewood-Richardson coefficients, we how-
ever use the following combinatorial description for Littlewood-Richardson co-
efficients in this article.



1200 SOOJIN CHO, EUN-KYOUNG JUNG, AND DONGHO MOON

Definition 1.2. Given three partitions λ, µ and ν, Littlewood-Richardson co-
efficient (LR-coefficient) cν

λµ is the number of LR-tableaux on the shape ν/λ of
content µ.

When n is a positive integer, we let [n] = {1, 2, . . . , n}. For a pair of positive
integers r, n with r ≤ n, we let I = {i1, i2, . . . , ir}, i1 < i2 < · · · < ir, be
an r-subset of [n], and λ be a partition with `(λ) ≤ n. We define λI =
(λi1 , . . . , λir

) as a subpartition of λ, which is associated to I. We denote by
Ic the complement of I in [n], i.e., Ic = [n] − I. The following is the classical
reduction for LR-coefficients:

Theorem 1.3 (See [10], [3] and [4]). Let λ, µ and ν be partitions whose lengths
are at most n. Suppose there are 1 ≤ i, j, k ≤ n such that i + j = k + n and
νk = λi + µj. Then,

cν
λµ = cνKc

λIc µJc ,

where I = {i1}, J = {j1}, K = {k1}.
We fix a positive integer n. For a given subset I ⊆ [n], we let π(I) =

(ir − r, ir−1 − (r − 1), . . . , i1 − 1) be a partition associated to I.

Definition 1.4. For a pair of two positive integers r ≤ n, define a set of triples
of r-subsets of [n] as follows:

Rn
r = {(I, J,K) | I, J,K are r-subsets of [n], c

π(K)
π(I)π(J) = 1} .

Now we state the KTT theorem on the factorization of LR-coefficients.

Proposition 1.5 (KTT theorem [15]). Let λ, µ and ν be partitions with at
most n nonzero parts and cν

λµ > 0. Suppose that there exists (I, J,K) ∈ Rn
r for

some r < n, which satisfies the equality
∑

k∈K νk =
∑

i∈I λi +
∑

j∈J µj. Then

(1.6) cν
λµ = cνK

λIµJ
cνKc

λIc µJc
.

Observe that if λ, µ, ν are partitions whose lengths are at most 2, then the
corresponding LR-coefficient is 1 whenever it is non-zero. Hence, in the KTT
theorem, if r ≤ 2 or r ≥ n − 2, then cνK

λIµJ
= 1 or cνKc

λIc µJc
= 1, respectively.

Therefore, four cases r = 1, 2, n − 1, n − 2 of the KTT theorem will give us
reduction formulae of LR-coefficients. More interestingly, the KTT theorem
for the case r = n − 1 gives the classical reduction formula in [10], whose
combinatorial proof using LR-tableaux is given in [3]. For more details of these
observations, see [6]. Moreover, in [6], we interpret the condition that a triple
(I, J,K) is in Rn

r in terms of triple (Ic, Jc,Kc), and hence, we are able to state
an explicit and straightforward condition (see equations (1.8)–(1.12) below) on
the partitions, for that the reduction formula of r = n− 2 holds. These results
including results on other reduction formulae are also presented in [4].

Our aim in this article is to prove the reduction formula (the KTT theorem
when r = n− 2) using tableaux theory. The following is a precise statement of
our reduction formula (the KTT theorem when r = n− 2):
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Proposition 1.7 (reduction formula, KTT theorem for r = n − 2). Let λ, µ
and ν be partitions with `(λ), `(µ), `(ν) ≤ n and cν

λµ > 0. Suppose that there
are three subsets I = {i1, i2}, J = {j1, j2}, K = {k1, k2} of [n] such that

i1 + i2 + j1 + j2 = k1 + k2 + 2n− 1 ,(1.8)
k2 + n ≤ i2 + j2 ,(1.9)
k1 + n ≤ i2 + j1 ,(1.10)
k1 + n ≤ i1 + j2 ,(1.11)

νk1 + νk2 = λi1 + λi2 + µj1 + µj2 .(1.12)

Then, we have the following reduction formula on Littlewood-Richardson coeffi-
cients;

(1.13) cν
λµ = cνKc

λIc , µJc .

Note Proposition 1.7 is an extension of the classical reduction formula, in
the sense that (1.13) reduces two parts from each partition. In the following
sections, we give a combinatorial proof of Proposition 1.7 by constructing a bi-
jection between two sets of LR-tableaux of corresponding shapes and contents.

2. Algorithms

In this section, we describe a bijection which will be used in Section 3 to
prove Proposition 1.7. We start this section by providing some conventions.
For a filling S of skew shape with n rows and integers 1 ≤ p, ` ≤ n, we let np

S(`)
be the number of `’ s in the pth row of S. Also we let S(p, q) denote the entry
in the box at (p, q)-position of the filling S.

Assume λ, µ, ν and I = {i1, i2}, J = {j1, j2}, K = {k1, k2} satisfy the
conditions in Proposition 1.7 for a fixed integer n ≥ 2. For the convenience, we
let a := i1−k1, b := i2−k2 and α := (n−1)−j1, β := n−j2. It is obvious that
α ≥ β ≥ 0 from j1 < j2. Moreover, a, b ≥ 0 because (1.9) and (1.11) imply
i1 ≥ k1 + n− j2 ≥ k1 and i2 ≥ k2 + n− j2 ≥ k2. We rewrite the conditions in
Equations (1.8)–(1.11) in terms of a, b, α and β;

α + β = a + b,(2.1)

β ≤ b,(2.2)

k1 ≤ k2 + b− α− 1,(2.3)

β ≤ a.(2.4)

Note that Equations (2.1), (2.2) and (2.4) imply that

(2.5) β ≤ a, b ≤ α.

We will describe our reduction algorithm for Proposition 1.7 by providing a
bijective map Φ from the set of LR-tableaux on the shape ν/λ with content µ
onto the set of LR-tableaux on the shape νKc/λIc with content µJc . In this
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section we only describe Φ and its inverse. We will prove that Φ is well-defined,
and hence is a bijective map in Section 3.

The following lemmas are adopted from [3].

Lemma 2.6. A skew tableau T with n rows is an LR-tableau, i.e., the reverse
row word w(T ) is a lattice word, if and only if, for all 1 < p, s ≤ n,

p∑

h=1

nh
T (s) ≤

p−1∑

h=1

nh
T (s− 1).

Lemma 2.7. Suppose that s appears in the qth row of an LR-tableau T . Then
q ≥ s.

Throughout this section, we assume that λ, µ, ν and I = {i1, i2}, J =
{j1, j2}, K = {k1, k2} satisfy the conditions in Proposition 1.7 for a given n,
and T is an LR-tableau of the shape ν/λ with content µ. The following crucial
observation leads us to establish an algorithm for Φ. Also the well-definedness
of Φ is based on this.

Proposition 2.8. We have

(2.9)

nk2
T (k2) + · · ·+ nk2+β

T (k2)

= nk2+1
T (k2 + 1) + · · ·+ nk2+β+1

T (k2 + 1)
...

= nj2
T (j2) + · · ·+ nn

T (j2)
= µj2 ,

(2.10)

nk2+b−α−1
T (k2 + b− α− 1) + · · ·+ nk2+b

T (k2 + b− α− 1)

= nk2+b−α
T (k2 + b− α) + · · ·+ nk2+b+1

T (k2 + b− α)
...

= nj1
T (j1) + · · ·+ nn

T (j1)
= µj1

and

(2.11)

nk1
T (k1) + · · ·+ nk1+a

T (k1)

= nk1+1
T (k1 + 1) + · · ·+ nk1+a+1

T (k1 + 1)
...

= nk2+b−α−1
T (k2 + b− α− 1) + · · ·+ nk2+β−1

T (k2 + b− α− 1).

Proof. First we note that j2 ≥ k2 + n − i2 ≥ k2 by Equation (1.9), j1 ≥
k1+n−i2 ≥ k1 by Equation (1.10), and k2+b−α−1 ≥ k1 from Equation (2.3).
Also note j1 = n− 1− α ≥ i2 − 1− α = k2 + b− α− 1.
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We use Lemma 2.6 and Lemma 2.7 repeatedly to obtain the following inequ-
alities;

µj2 + µj1

=
(
nj2

T (j2) + · · ·+ nn
T (j2)

)
+

(
nj1

T (j1) + · · ·+ nn
T (j1)

)

≤
(
nj2−1

T (j2 − 1) + · · ·+ nn−1
T (j2 − 1)

)
+

(
nj1

T (j1) + · · ·+ nn
T (j1)

)

...

≤
(
nk2

T (k2) + · · ·+ nk2+β
T (k2)

)
+

(
nj1

T (j1) + · · ·+ nn
T (j1)

)

≤
(
nk2

T (k2) + · · ·+ nk2+β
T (k2)

)
+

(
nj1−1

T (j1 − 1) + · · ·+ nn−1
T (j1 − 1)

)

...

≤
(
nk2

T (k2) + · · ·+ nk2+β
T (k2)

)

+
(
nk2+b−α−1

T (k2 + b− α− 1) + · · ·+ nk2+b
T (k2 + b− α− 1)

)

=
(
nk2

T (k2) + · · ·+ nk2+β
T (k2)

)

+
(
nk2+b−α−1

T (k2 + b− α− 1) + · · ·+ nk2+β−1
T (k2 + b− α− 1)

)

+
(
nk2+β

T (k2 + b− α− 1) + · · ·+ nk2+b
T (k2 + b− α− 1)

)

≤
(
nk2

T (k2) + · · ·+ nk2+β
T (k2)

)

+
(
nk2+b−α−2

T (k2 + b− α− 2) + · · ·+ nk2+β−2
T (k2 + b− α− 2)

)

+
(
nk2+β

T (k2 + b− α− 1) + · · ·+ nk2+b
T (k2 + b− α− 1)

)

≤
...

≤
(
nk2

T (k2) + · · ·+ nk2+β
T (k2)

)

︸ ︷︷ ︸
A

+
(
nk1

T (k1) + · · ·+ nk1+a
T (k1)

)

︸ ︷︷ ︸
B

+
(
nk2+β

T (k2 + b− α− 1) + · · ·+ ni2
T (k2 + b− α− 1)

)

︸ ︷︷ ︸
C

≤ (νk1 − λi1) + (νk2 − λi2) = µj1 + µj2 .

The last inequality is obtained from the following observations: Each column of
T may contain at most one k1, and so B ≤ νk1 −λi1 because k1 + a = i1. Note
also k2 + b − α − 1 < k2 because b − α − 1 < 0 by Equation (2.5). Moreover,
indices of the rows where k2’s in A appear are always less than or equal to
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indices of the rows where (k2 + b − α − 1)’s in C appear. We cannot have a
k2 + b − α − 1 below a k2 in a column of T since b − α ≤ 0 from (2.5). Thus,
each of the columns from the (λi2 + 1)st to the νk2th may contribute at most
once in counting A + C, and hence A + C ≤ νk2 − λi2 .

Thus, all inequalities are actually equalities and we obtain desired relations.
¤

Remark. While an earlier version of this paper was circulating, it was pointed
out that Proposition 2.8 could be naturally related with some conditions on
hives under the bijection between LR-tableaux and hives in [14]. We discuss
this in Appendix.

For convenience, we use the following convention:

Definition 2.12. We let S(T ) be the union of the following sets:
(S1) Set of boxes which contain k1 and are in (a + 1) consecutive rows from

the k1th row to the i1th row.
(S2) Set of boxes which contain (k2 + b − α − 1) and are in (b − β + 1)

consecutive rows from the (k2 + β)th row to the i2th row.
(S3) Set of boxes which contain k2 and are in (β +1) consecutive rows from

the k2th row to the (k2 + β)th row.

Now we let the number of boxes of (S1) be ω. Note that (2.9) implies the
number of boxes in (S3) is µj2 , and (2.10) and (2.11) imply the number of
boxes of (S2) is µj1 − ω. The following lemma is immediate from the proof of
Proposition 2.8 and will be needed in Section 3.

Lemma 2.13. (1) There is exactly one k1 of (S1) in each column of T from
the (λi1 + 1)st column to the νk1th column of T , and they are between the k1th
row and the i1th row of T . Hence ω = νk1 − λi1 .

(2) There is exactly one (k2 + b− α − 1) of (S2) in each column of T from
the (λi2 + 1)st column to the (νk2 − µj2)th column, and they are between the
(k2 + β)th row and the i2th row of T .

(3) There is exactly one k2 of (S3) in each column of T from the (νk2−µj2 +
1)st column to the νk2th column of T and they are between the k2th row and
the (k2 + β)th row of T .

Remark 2.14. Because of Lemma 2.7, there are µj2 j2’s in the (β+1) consecutive
rows from the j2th row to the nth row of T (note β + 1 = n − j2). Then,
Lemma 2.6 imply that there are at least µj2 k2’s in β consecutive rows from
the k2th row to the (k2 + β)th row (note k2 + β = k2 + n − j2). Because
k2 + n − j2 ≤ i2 and each column of T may contain at most one k2, we have
νk2 −λi2 ≥ νk2 −λk2+n−j2 ≥ µj2 . Hence, νk2 −λi2 −µj2 = λi1 + µj1 − νk1 ≥ 0.

Corollary 2.15. Each column of T may contain at most two boxes in S(T ).

Equations (2.9), (2.10), (2.11) and Lemma 2.13 imply that
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Corollary 2.16. (1) For ` = k1, k1 + 1, . . . , k2 + b− α− 1,
`+a∑

q=`

nq
T (`) = ω = νk1 − λi1 .

(2) For ` = k2 + b− α− 1, . . . , j1,
`+α+1∑

q=`

nq
T (`) = µj1 .

(3) For ` = k2, . . . , j2,
`+β∑

q=`

nq
T (`) = µj2 .

For a skew shape ν/λ, we allow a filling S of shape ν/λ to contain boxes
which are empty. As usual, the reverse row word w(S) of a filling S is the
word obtained by reading the entries of S from right to left and top to bottom,
ignoring the empty boxes. Whenever we refer to the order of a content in a
filling S, we mean the order in the corresponding reverse row word w(S). We
use the following operation on a filling of skew-shape to describe our reduction
algorithm.

Definition 2.17. There are two types of operations: For a filling S of shape
ν/λ,

(1) R`
p,q(S) is the filling of shape ν/λ obtained by replacing the first ` p’s in

S with q’s,
(2) R`

p,∅(S) is the filling of shape ν/λ obtained by emptying the first ` boxes
of S containing p.

Now we describe our reduction algorithm. Assume λ, µ, ν and I, J,K satisfy
the conditions in Proposition 1.7 and let T be an LR-tableau on the shape
ν/λ with content µ. Note that all j1’s and j2’s in T will be removed after we
apply reduction procedure to T . During the reduction procedure, we empty
boxes in S(T ) and move the contents down until we remove all j1’s and j2’s.
Equation (2.11) allows us to apply a sequence of R operations to T as follows:

(2.18) Rω
k2+b−α−1,k2+b−α−2 ◦ · · · ◦ Rω

k1+2,k1+1 ◦Rω
k1+1,k1

◦Rω
k1,∅ .

Note (2.18) empties all boxes of (S1) in S(T ) and replaces all (k2 + b−α− 1)’s
from the (k2 + b−α− 1)st row to the (k2 +β−1)st row with (k2 + b−α− 2)’s.

Then we use Equation (2.10) and apply a sequence of R operations to the
filling we obtained in (2.18) as follows:

(2.19) Rµj1
j1,j1−1 ◦ · · · ◦ R

µj1
k2+b−α,k2+b−α−1 ◦R

µj1−ω

k2+b−α−1,∅ .

Note Rµj1−ω

k2+b−α−1,∅ empties boxes of (S2) in S(T ). Then Rµj1
k2+b−α,k2+b−α−1 will

replace µj1 (k2+b−α)’s in the next (α+2) rows with (k2+b−α−1)’s. Remember
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that ω (k2 + b− α− 1)’s were replaced in (2.18) and µj1 − ω (k2 + b− α− 1)’s
were in the boxes of (S2). After we apply (2.19), all j1’s are removed.

Next step is to empty boxes of (S3) and remove all j2’s. Again, Equa-
tion (2.9) enables us to apply one of the following operations to the filling we
obtained in (2.19) depending on the given conditions:
If k2 > j1,

(2.20a) Rµj2
j2,j2−1 ◦ · · · ◦ R

µj2
k2+1,k2

◦Rµj2
k2,∅ .

If k2 = j1,

(2.20b) Rµj2
j2,j2−1 ◦ · · · ◦ R

µj2
k2+1,k2−1 ◦R

µj2
k2−1,∅ .

If k2 < j1,

Rµj2
j2,j2−1 ◦ · · · ◦ R

µj2
j1+2,j1+1 ◦R

µj2
j1+1,j1−1 ◦R

µj2
j1−1,j1−2 ◦ · · ·

· · · ◦ Rµj2
k2,k2−1 ◦R

µj2
k2−1,∅ .

(2.20c)

After applying the above procedure to T , we obtain a filling with content
(µ1, . . . , µj1−1, 0, µj1+1, . . . , µj2−1, 0, µj2+1, . . . , µn). Roughly speaking, an ` in
the (p, q)-box of T will remain the same or be changed to either an `− 1 or an
`− 2 depending on whether the procedures affect the (p, q)-box either once or
twice. Note that the last case occurs only if k2 + 1 ≤ ` ≤ j1 and the position
of the box is in (β + 1) consecutive rows from the `th row to the (` + β)th row
of T . The illustration in Figure 1 helps us to understand what we discussed
above. Note the numbers in boldface indicates that the content ` of a box in
the area is decreased by 1 or 2.

We use the following definition to describe the whole process of applying
(2.18), (2.19) and (2.20) in a single step.

Definition 2.21. We define hT to be a filling of shape ν/λ with integers
0,−1,−2 so that hT (p, q) is empty if (p, q)-box of T is in S(T ); for (p, q) ∈
ν/λ− S(T ),

hT (p, q) =





−1 if k1 + 1 ≤ T (p, q) ≤ k2 + b− α− 1 and p ≤ T (p, q) + a,

−1 if k2 + b− α ≤ T (p, q) ≤ k2 − 1 and p ≤ T (p, q) + α + 1,

−2 if k2 + 1 ≤ T (p, q) ≤ j1 + 1 and p ≤ T (p, q) + β,

−1 if k2 ≤ T (p, q) ≤ j1 and T (p, q) + β < p ≤ T (p, q) + α + 1,

−1 if max{j1 + 2, k2 + 1} ≤ T (p, q) ≤ j2 and p ≤ T (p, q) + β,
0 otherwise.

Note if k2 ≥ j1, then some cases are void in the above definition. The
following is straightforward.

Lemma 2.22. Let F be the filling obtained by applying (2.18), (2.19) and
(2.20) to T in that order. If the (p, q)-box of T is in S(T ), then F (p, q) is
empty. Otherwise, F (p, q) = T (p, q) + hT (p, q).



EXTENSION OF REDUCTION FORMULA 1207

n

β + 1

j2 α + 2

j1

−1

β + 1

k2

k2 + β

−2

α− a + 1

a + 1

k2 + b− α− 1

k2 + b−1

a + 1

k1

k1 + a
−1

(a) k2 < j1

n

β + 1

j2 −1

β + 1

k2

k2 + β
α + 2

j1

−1

α− a + 1

a + 1

k2 + b− α− 1

k2 + b

a + 1

k1

k1 + a

−1

(b) k2 > j1

Figure 1: Illustration of reduction algorithm

Now our reduction algorithm is presented. Note, by sliding, we mean that
empty box exchanges its position with a filled box in the same column.

Definition 2.23. The reduced LR-tableau Φ(T ) on the shape νKc/λIc with
content µJc is obtained by applying the following algorithm:

Step 1: Empty all boxes in S(T ).
Step 2: Add hT (p, q) to the (p, q)-box which is not empty.
Step 3: for ` = (j1 + 1) to (j2 − 1) do

Replace all `’s with (`− 1)’s.
end for

Step 4: for ` = (j2 + 1) to n do
Replace all `’s with (`− 2)’s.

end for
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Step 5: Slide empty boxes of (S2) or (S3) in Definition 2.12 down to the
i2th row or to the end of the column whichever occurs first. Also
slide empty boxes of (S1) down to the i1th row or to the end of
the column whichever occurs first.

Step 6: Remove all the empty boxes which are in the i1th row, i2th row
or at the end of columns.

Note Proposition 2.8 guarantees that Φ(T ) is a filling of νKc/λIc with content
µJc . We denote the filling obtained by applying Step 1 and Step 2 by T + hT

and the filling obtained by applying Step 1 through Step 4 by T ◦. We will show
that Φ(T ) is an LR-tableau in Section 3.

Now we give an example of our algorithm for k2 < j1.

Example 2.24. Let n = 14. For given partitions λ = (12, 12, 11, 10, 10, 10, 9,
9, 7, 5, 4, 3, 1, 0), µ = (9, 8, 7, 6, 6, 5, 5, 5, 5, 3, 3, 1, 1, 1) and ν = (15, 14, 14, 13, 13,
13, 13, 13, 11, 11, 10, 10, 9, 9), we choose i1 = 6, i2 = 8, k1 = 2, k2 = 5, j1 = 9,
j2 = 11 so that λ6 + λ8 + µ9 + µ11 = 27 = ν2 + ν5. In this case, a = 4, b = 3,
α = 4, β = 3 and k2 + b−α− 1 = 3. We are given the following LR-tableau T
on the shape ν/λ with content µ.

T =

1 1 1
2 2

1 3 3
1 2 4
2 3 5
3 4 6

2 4 5 7
3 5 6 8

4 4 6 9
1 5 5 7 7 10

2 6 6 8 8 11
1 3 7 7 9 9 12

1 2 4 8 8 10 10 13
1 2 3 5 9 9 11 11 14

, hT =

0 0 0

0 −1−1
0 −1
−1

−1−1−2
0 −1 −2

−2−2
−1−1−2−2

0 −1−1−2−2−2
0 −1−1−2−2−1

0 0 −1−1−2−2 0
0 0 0 −1−1−2−2 0

0 0 0 0 −1−1−1−1 0

The following shows the process applying (2.18), (2.19) and (2.20).

T
(2.18)7−−−−→

1 1 1

1 2 2
3

31 4
2 5 3

2 4 6 3
2 4 5 7
3 5 6 8

4 4 6 9
1 5 5 7 7 10

2 6 6 8 8 11
1 3 7 7 9 9 12

1 2 4 8 8 10 10 13
1 2 3 5 9 9 11 11 14

R5
4,3 ◦R1

3,∅7−−−−−−−→

1 1 1

1 2 2
1 3

2 5
2 3 6

2 3 5 7
5 6 8

3 3 6 9
1 5 5 7 7 10

2 6 6 8 8 11
1 3 7 7 9 9 12

1 2 4 8 8 10 10 13
1 2 3 5 9 9 11 11 14

4

4

4

4

4
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(2.19)7−−−−→

1 1 1

1 2 2
1 3

2 4
2 3 5

2 3 4 6
4 5 7

3 3 5 8
1 4 4 6 6 10

2 5 5 7 7 11
1 3 6 6 8 8 12

1 2 4 7 7 10 10 13
1 2 3 5 8 8 11 11 14

(2.20)7−−−−→

1 1 1

1 2 2
1 3

2
2 3 4

2 3 5
4 6

3 3 4 7
1 4 4 5 5 8

2 5 5 6 6 10
1 3 6 6 7 7 12

1 2 4 7 7 8 8 13
1 2 3 5 8 8 10 10 14

= F

The following shows our reduction algorithm in Definition 2.23 to obtain
Φ(T ). We may verify Lemma 2.22 by comparing the filling obtained above and
T + hT below.

T + hT =

1 1 1

1 2 2
1 3

2
2 3 4

2 3 5
4 6

3 3 4 7
1 4 4 5 5 8

2 5 5 6 6 10
1 3 6 6 7 7 12

1 2 4 7 7 8 8 13
1 2 3 5 8 8 10 10 14

Step 3,47−−−−−→ T ◦ =

1 1 1

1 2 2
1 3

2
2 3 4

2 3 5
4 6

3 3 4 7
1 4 4 5 5 8

2 5 5 6 6 9
1 3 6 6 7 7 10

1 2 4 7 7 8 8 11
1 2 3 5 8 8 9 9 12

Step 57−−−→

1 1 1
2 2

1 3
1 2 4
2 3 5

2 3 4 6

3 3 4 7
1 4 4 5 5 8

2 5 5 6 6 9
1 3 6 6 7 7 10

1 2 4 7 7 8 8 11
1 2 3 5 8 8 9 9 12

Step 67−−−→ Φ(T ) =

1 1 1
2 2

1 3
1 2 4
2 3 5

2 3 4 6
3 3 4 7

1 4 4 5 5 8
2 5 5 6 6 9

1 3 6 6 7 7 10
1 2 4 7 7 8 8 11

1 2 3 5 8 8 9 9 12

Here is another example for k2 = j1.

Example 2.25. Let n = 9. For given partitions λ = (11, 10, 9, 9, 8, 8, 7, 3, 0),
µ = (7, 6, 5, 5, 5, 3, 3, 1, 1) and ν = (13, 13, 13, 13, 11, 11, 11, 9, 7), we choose i1 =
4, i2 = 7, k1 = 1, k2 = 5, j1 = 5, j2 = 7 so that λ4+λ7+µ5+µ7 = 24 = ν1+ν5.
In this case, a = 3, b = 2, α = 3, β = 2 and k2 + b− α− 1 = 3.

T =

1 1
1 2 2

1 2 3 3
2 3 4 4

1 3 5
2 4 6

3 5 5 7
1 4 4 6 6 8

1 2 5 5 7 7 9

, hT =

−1−1
−1−1−1

−1−1−1−1
0 −1
0 −1−2

−1
0 −1−1−2−2 0

0 0 −1−1−1−1 0
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T + hT =

1 1
1 2 2

1 2 3 3
1 2
2 3 4

6
1 3 3 4 4 8

1 2 4 4 6 6 9

7−→ T ◦ =

1 1
1 2 2

1 2 3 3
1 2
2 3 4

5
1 3 3 4 4 6

1 2 4 4 5 5 7

7−→

1 1
1 2 2

1 2 3 3

1 2 4
2 3 5

1 3 3 4 4 6
1 2 4 4 5 5 7

7−→ Φ(T ) =

1 1
1 2 2

1 2 3 3
1 2 4
2 3 5

1 3 3 4 4 6
1 2 4 4 5 5 7

The following is an example for k2 > j1.

Example 2.26. We let n = 9. For given partitions λ = (6, 5, 5, 5, 2, 0, 0, 0, 0),
µ = (8, 8, 7, 7, 6, 4, 4, 4, 1) and ν = (9, 9, 9, 8, 8, 8, 7, 7, 7), we choose i1 = 4,
i2 = 9, k1 = 1, k2 = 7, j1 = 4, j2 = 8 so that λ4 + λ9 + µ4 + µ8 = 16 = ν1 + ν7.
In this case, a = 3, b = 2, α = 4, β = 1 and k2 + b− α− 1 = 4.

T =

1 1 1
1 2 2 2
2 3 3 3
3 4 4

1 1 4 4 5 5
1 1 2 2 5 5 6 6
2 2 3 3 6 6 7
3 4 4 7 7 7 8
4 5 5 8 8 8 9

, hT =

−1−1−1
−1−1−1−1
−1−1−1

0 0 −1−1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 −1

0 0 −1−1−1 0

,

T + hT =

1 1 1
1 2 2 2
2 3 3

1 1 3 3 5 5
1 1 2 2 5 5 6 6
2 2 3 3 6 6
3 7

5 5 7 7 7 9

7−→ T ◦ =

1 1 1
1 2 2 2
2 3 3

1 1 3 3 4 4
1 1 2 2 4 4 5 5
2 2 3 3 5 5
3 6

4 4 6 6 6 7

7−→

1 1 1
1 2 2 2
2 3 3

1 1 3 3 4 4
1 1 2 2 4 4 5 5
2 2 3 3 5 5 6
3 4 4 6 6 6 7

7−→ Φ(T ) =

1 1 1
1 2 2 2
2 3 3

1 1 3 3 4 4
1 1 2 2 4 4 5 5
2 2 3 3 5 5 6
3 4 4 6 6 6 7
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We now define a function Ψ that plays the role of the inverse of Φ. For λ, µ, ν
and I, J,K which satisfy the conditions in Proposition 1.7, recall a, b, α, β are
defined as a = i1 − k1, b = i2 − k2, α = n− 1− j1 and β = n− j2.

Definition 2.27. Let λ, µ, ν and I, J,K satisfy the conditions in Proposi-
tion 1.7. For a given LR-tableau U on the shape νKc/λIc with content µJc , an
LR-tableau Ψ(U) on the shape ν/λ with content µ is obtained by applying the
following algorithm:

Step 1: Obtain a filling (with (µj1 + µj2) empty boxes) of shape ν/λ by
suitably inserting empty boxes between the (i1 − 1)st row and the
i1th row of U , between the (i2 − 2)nd row and the (i2 − 1)st row of
U and, if necessary, at the end of columns.

Step 2: Upper empty boxes are leftmost (νk1−λi1) empty boxes among empty
boxes in the i1th row or above. Other (νk2 − λi2) empty boxes are
lower empty boxes. Slide the empty boxes up so that columns are
increasing when we put (k1 − 0.5) on upper empty boxes, (k2 + b−
α−1.5) on leftmost (νk2−λi2−µj2) lower empty boxes and (k2−1.5)
on remaining lower empty boxes.

Step 3: for ` = (j2 − 1) to (n− 2) do
Replace `’s with (` + 2)’s.

end for
Step 4: for ` = j1 to (j2 − 2) do

Replace all `’s with (` + 1)’s.
end for

We denote the tableau obtained from U by applying the Step 1 to Step 4 by
U ′. Now we define h′U to be a filling of shape ν/λ with integers 0, 1, 2 so that
h′U (p, q) is empty if (p, q)-box of U ′ is empty. Otherwise h′U (p, q) is defined as

h′U (p, q) =





1 if k1 ≤ U ′(p, q) ≤ k2 + b− α− 2 and (p, q) is a position
of the first (νk1 − λi1) U ′(p, q)’s in w(U ′),

1 if k2 + b− α− 1 ≤ U ′(p, q) ≤ k2 − 2 and (p, q) is
a position of the first µj1 U ′(p, q)’s in w(U ′),

2 if k2 − 1 ≤ U ′(p, q) ≤ j1 − 1 and (p, q) is a position
of the first µj2 U ′(p, q)’s in w(U ′),

1 if k2 − 1 ≤ U ′(p, q) ≤ j1 − 1 and (p, q) is a position
of U ′(p, q) which is between the (µj2 + 1)st
and the µj1th U ′(p, q)’s in w(U ′),

1 if max{j1 + 1, k2} ≤ U ′(p, q) ≤ j2 − 1 and (p, q) is
a position of the first µj2 U ′(p, q)’s in w(U ′),

0 otherwise.

(2.28)

Step 5: Add h′U (p, q) to the (p, q)-box of U ′ which is not empty.
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Step 6: Place k1 on upper empty boxes, (k2+b−α−1) on leftmost (νk2−λi2−
µj2) lower empty boxes and k2 on remanning lower empty boxes.

Remarks 2.29. (a) Again, note if k2 ≥ j1, then some cases of (2.28) are void.
(b) The positions of empty boxes to be inserted in Step 1 are secured because

λ, µ, ν and I, J,K are given and satisfy the conditions in Proposition 1.7.
(c) Note cν

λµ > 0 and k2 +n−j2 ≤ i2 in Equation (1.9). Since cν
λµ > 0, there

is an LR-tableau T on the shape ν/λ with content µ. Because of Remark 2.14,
(νk2 − λi2 − µj2) in Step 2 is nonnegative and Step 2 is also secured.

(d) It is clear that (p, q)-box of Φ(T )′ is empty if and only if that of T is in
S(T ). Moreover, the relation h′Φ(T )(p, q) = −hT (p, q) holds if (p, q)-box is not
in S(T ).

(e) For any LR-tableau T on the shape ν/λ with content µ, Φ(T )′ = T +hT

holds.
(f) Finally, note that steps of Definition 2.27 reverse those of Definition 2.23.

Thus, examples for Ψ may be obtained from Examples 2.24, 2.25 and 2.26 by
reading the steps backwards.

3. Combinatorial proof

In this section, we show that Φ and Ψ are well-defined bijective maps between
the set of LR-tableaux of shape ν/λ with content µ and the set of LR-tableaux
of shape νKC /λIC with content µJC . First, we show that the map Φ in Defi-
nition 2.23 is well defined, i.e., Φ(T ) is an LR-tableau for an LR-tableau T of
given condition. With similar arguments, we may show Ψ is well-defined. It is
clear that Ψ ◦ Φ and Φ ◦ Ψ are the identity functions, and this will complete
the combinatorial proof of the KTT theorem when r = n− 2.

We first show that Φ preserves the strict increasingness of columns.

Proposition 3.1. Assume that λ, µ, ν and I = {i1, i2}, J = {j1, j2},K =
{k1, k2} satisfy the given conditions in Proposition 1.7. Let T be an LR tableau
of shape ν/λ and content µ. Then, Φ(T ) is strictly increasing in columns.

Proof. It is enough to show T ◦ is strictly column increasing when we ignore
empty boxes since the process to obtain Φ(T ) from T ◦ keeps each column
unchanged when it is considered as an ordered set.

We show that column increasingness is invariant under each action of (2.18),
(2.19) and (2.20). Let T ′ be the filling (with empty boxes) obtained after (2.18)
is applied to T and T ′′ be the filling (with empty boxes) obtained after (2.19)
is applied to T ′.

We first consider the case when there is one or two empty boxes between
two numbers in a column of T ′ or T ′′. Suppose that T ′(p, q) is an empty box.
We show that the column increasingness is unchanged after we apply (2.19) to
T ′ by comparing T ′′(p−1, q) and T ′′(p+1, q). Note T ′(p−1, q) = T (p−1, q) <
k1 ≤ T ′(p + 1, q). If T ′(p + 1, q) = k1, then either T ′′(p + 1, q) is empty (when
k1 = k2 + b − α − 1) or T ′′(p + 1, q) = T ′(p + 1, q). If T ′(p + 1, q) > k1, then
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either T ′′(p + 1, q) = T ′(p + 1, q) − 1 or T ′′(p + 1, q) = T ′(p + 1, q). In any
case, T ′′(p− 1, q) = T (p− 1, q) < k1 ≤ T ′′(p + 1, q) or the (p + 1, q)-box of T ′′

is empty. Almost the same argument works for the case when T ′′(p, q) is an
empty box and we omit the proof of this case.

The second case we consider is when T ′(p, q)+2 ≤ T ′(p+1, q) or T ′′(p, q)+
2 ≤ T ′′(p+1, q). The only action that reduces the content by two occurs when
we apply (2.20) to T ′′, and its action replaces j1 + 1 with j1 − 1. Therefore we
only need care about the case T ′′(p + 1, q) = j1 + 1 and T ′′(p + 1, q) is among
the first µj2 (j1 + 1)’s in T ′′. If T ′′(p, q) < j1 − 1, then there is nothing to
prove. So, we assume that T ′′(p, q) = j1 − 1, then T ′′(p, q) is among the first
µj2 (j1 − 1)’s because of Corollary 2.16 (3) and T ′′(p, q) = j1 − 1 is replaced
with j1 − 2 by (2.20).

We now consider the effect of (2.18), (2.19) and (2.20) on two consecutive
integers in adjacent boxes in a column.

Suppose that s = T (p + 1, q) = T (p, q) + 1 for some p, q, and T (p + 1, q) is
replaced by s−1 after (2.18) is applied. Then k1+1 ≤ T (p+1, q) ≤ k2+b−α−1
and T (p + 1, q) ≤ p + 1 ≤ T (p + 1, q) + a by Corollary 2.16 (1). If s− 1 = k1,
then T (p, q) must be replaced by an empty box. We, therefore, may assume
that s− 1 > k1. In this case, we can see that k1 + 1 ≤ T (p, q) ≤ k2 + b− α− 1
and T (p, q) ≤ p ≤ T (p, q) + a, hence T (p, q) must be replaced by s − 2 by
Corollary 2.16. Therefore, T ′(p + 1, q) > T ′(p, q).

Suppose that s = T ′(p + 1, q) = T ′(p, q) + 1 for some p, q, and T ′(p + 1, q) is
replaced by s−1 after (2.19) is applied. Similar argument as above proves that
(2.19) either empties the (p, q)-box of T ′ or replaces T ′(p, q) with T ′(p, q)− 1.

There are three cases in (2.20). We only consider the third case of (2.20),
which is less trivial than other two cases of (2.20). Suppose that s = T ′′(p +
1, q) = T ′′(p, q) + 1 for some p, q, and T ′′(p + 1, q) is replaced by s − 1 after
(2.20c) is applied. Then, Corollary 2.16 and the effects of the actions (2.18),
(2.19) imply either k2 ≤ T ′′(p + 1, q) ≤ j1 − 1 and T ′′(p + 1, q) + 1 ≤ p + 1 ≤
T ′′(p + 1, q) + 1 + β, or j1 + 2 ≤ T ′′(p + 1, q) ≤ j2 and T ′′(p + 1, q) ≤ p + 1 ≤
T ′′(p + 1, q) + β. In either case, T ′′(p, q) = s − 1 must be replaced by s − 2
because of Corollary 2.16.

While we apply Step 3 and Step 4 of Definition 2.23 to get T ◦, we replace
all s’s with (s− 1)’s for j1 < s < j2, and all t’s with (t− 2)’s for j2 < t. Hence,
Step 3 and Step 4 do not affect the column increasingness since T ′′ has neither
j1 nor j2. ¤

Before we prove weakly increasingness in row of Φ(T ) and the lattice word
property of w(Φ(T )), we prove some useful lemmas.

Let B and B′ be boxes at the (p, q)-position and at the (p′, q′)-position,
respectively, in a skew diagram. We say that B′ is on the South-west of B if
p < p′ and q ≥ q′. Also B′ is on the south-West of B if p ≤ p′ and q > q′.
Remember that whenever we refer to the order of a content in a filling S, we
mean the order in the corresponding reverse row word w(S).
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Lemma 3.2. Then, for any s and m, the followings hold:
(1) For an LR-tableau T , the mth (s + 1) is on the South-west of the mth s

in T .
(2) For a skew tableau T , the (m + 1)st s is on the south-West of the mth s

in T .

Proof. (1) We use an induction on m for a fixed s. For m = 1, it is trivial
because T is an LR-tableau.

Suppose that the lemma is true for m: The mth s is in the (p, q)-box of T
and the mth (s+1) is in the (p′, q′)-box of T , where p < p′ and q ≥ q′. Let the
(m + 1)st s be in the (r, l)-box and the (m + 1)st (s + 1) be in the (r′, l′)-box
of T . Note that p ≤ r, q > l, p′ ≤ r′ and q′ > l′ since T is strictly increasing in
columns and weakly increasing in rows.

Suppose that p = r. Then we have l = q−1. Therefore, we have l = q−1 ≥
q′− 1 > l′− 1 and l ≥ l′. We also have r = p < p′ ≤ r′, and the (m+1)st s+1
is on the South-west of the (m + 1)st s.

Suppose that p < r. Then we have r < r′ because T is an LR-tableau.
Hence, we only need to show that l ≥ l′. Assume that l < l′ on the contrary.
Then T (r, l′) = s since s = T (r, l) ≤ T (r, l′) < T (r′, l′) = s + 1. This gives
a contradiction since the s in the (r, l′)-box is between two s’s in the (p, q)-
box and the (r, l)-box, which are the mth and the (m + 1)st s respectively.
Therefore, we have l ≥ l′.

(2) It is straightforward from weakly increasingness in rows and strictly
increasingness in columns of skew tableaux. ¤

Definition 3.3. Let S be a filling of a skew shape. An Sw-route in S is, for
some k, a collection of k boxes in S satisfying the following two conditions;

(R1) there is exactly one box whose entry is s for each s = 1, 2, . . . , k,
(R2) the box whose entry is s + 1 is on the South-west of the box whose

entry is s for each s = 1, 2, . . . , k − 1.

Definition 3.4. Assume T is an LR-tableau of shape ν/λ with content µ. For
an integer m, 1 ≤ m ≤ µ1, we let RT (m) be a collection of (µ̃)m boxes in T
whose entries are the mth s’s in T for 1 ≤ s ≤ (µ̃)m, i.e.,

RT (m) =
{(

(p, q), T (p, q)
) ∣∣ T (p, q) is the mth s with 1 ≤ s ≤ (µ̃)m

}
.

From Lemma 3.2, we get the following lemma.

Lemma 3.5. For an LR-tableau T of shape ν/λ with content µ, every RT (m)
is an Sw-route in T , and T is a disjoint union of µ1 Sw-routes.

Example 3.6. In the following LR-tableau T , there are 6 RT (m) Sw-routes
and T is a disjoint union of them.
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1 1
1 2 2

1 2 3 3
2 3 4 4

1 3 5
2 4 6

3 5 5 7
1 4 4 6 6 8

For the rest of this section, we assume that λ, µ, ν and I = {i1, i2}, J =
{j1, j2}, K = {k1, k2} satisfy the conditions in Proposition 1.7 for a given n,
and T is an LR-tableau of the shape ν/λ with content µ.

Because we obtain T ◦ by applying (2.18), (2.19), (2.20), and Step 3 and
Step 4 in Definition 2.23 to T in sequence, we have the following lemma.

Lemma 3.7. Assume the (p, q)-box of T is in RT (m) for some m = 1, 2, . . . , µ1.
If the (p, q)-box of T ◦ is not empty, then

T (p, q)− T ◦(p, q) =





0 if m ≤ ω = νk1 − λi1 and T (p, q) < k1,

0 if ω < m ≤ µj1 and T (p, q) < k2 + b− α− 1,
0 if µj1 < m,

2 if m ≤ µj2 and k2 + 1 ≤ T (p, q),
1 otherwise.

Proof. The proof is straightforward from (2.18), (2.19), (2.20), and Defini-
tion 2.23. ¤

Lemma 3.8. T ◦ is weakly increasing in rows, if we ignore empty boxes.

Proof. We compare T ◦(p, q) with T ◦(p, q + 1) or with the entry of the first
nonempty box, say T ◦(p, q′), on the pth row starting from the (q+1)st column in
T ◦. Observe that hT (p, q) in Definition 2.21 depends on only p and T (p, q), and
it does not depend on q. Also the effects of Step 3 and Step 4 in Definition 2.23
on the (p, q)-box of F depend only on the value F (p, q) = T (p, q) + hT (p, q).
Therefore, if T (p, q) = T (p, q + ε) with a nonnegative integer ε, then T ◦(p, q) =
T ◦(p, q + ε). Thus, T (p, q) − T ◦(p, q) = 0 and T (p, q′) − T ◦(p, q′) = 1 imply
T (p, q) < T (p, q′). Otherwise, T (p, q) = T (p, q′) implies T ◦(p, q) = T ◦(p, q′),
and so we get T (p, q) = T ◦(p, q) = T ◦(p, q′) = T (p, q′) − 1, a contradiction.
Therefore, we have T ◦(p, q) = T (p, q) ≤ T (p, q′) − 1 = T ◦(p, q′). Similarly, if
T (p, q)− T ◦(p, q) = 1 and T (p, q′)− T ◦(p, q′) = 2, then T ◦(p, q) ≤ T ◦(p, q′).

Thus, weakly increasingness in rows of T ◦, that is T ◦(p, q) ≤ T ◦(p, q′), may
be broken only if T (p, q) − T ◦(p, q) = 0 and T (p, q′) − T ◦(p, q′) = 2, and it
is enough to consider this case. First assume that the (p, q + 1)-box of T ◦ is
not empty, that is q′ = q + 1. Since T (p, q + 1) − T ◦(p, q + 1) = 2, we have
T (p, q + 1) ≥ k2 + 1 and the (p, q + 1)-box of T is in RT (m) for some m ≤ µj2 ,
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by Lemma 3.7. Moreover, from Proposition 2.8 we have

(3.9) T (p, q + 1) ≤ p ≤ T (p, q + 1) + β.

Suppose T (p, q) < k2. Then T ◦(p, q) = T (p, q) ≤ k2 − 1 ≤ T (p, q + 1)− 2 =
T ◦(p, q + 1). So the weakly increasingness in the row holds.

Suppose k2 ≤ T (p, q). Then, the (p, q)-box of T is in RT (m) with µj1 < m
by Lemma 3.7. Note that µj1th (k2 + b − α − 1) is on the (λi2 + 1)st column
and (µj1 +1)st (k2 +b−α−1) is below the i2th row by Lemma 2.13. Therefore
mth (k2 + b−α− 1) is also below the i2th row. Because RT (m) is an Sw-route
in T by Lemma 3.5, the row index of mth T (p, q) is larger than or equal to the
row index of mth (k2 + b− α− 1) plus T (p, q)− (k2 + b− α− 1), i.e., we have

(3.10) i2 +
(
T (p, q)− (k2 + b− α− 1)

)
+ 1 ≤ p.

Equations (3.9) and (3.10) imply that i2 +{T (p, q)− (k2 +b−α−1)}+1 ≤ p ≤
T (p, q+1)+β or equivalently (α−β)+2 ≤ T (p, q+1)−T (p, q). Moreover β ≤ α
from Equation (2.5). Thus T ◦(p, q) = T (p, q) ≤ T (p, q + 1) − 2 = T ◦(p, q + 1)
and the weakly increasingness in the row of T ◦ holds.

Next assume that the (p, q + 1)-box of T ◦ is empty, that is q′ > q + 1. We
know that if T (p, q) = T (p, q + 1) and the (p, q + 1)-box of T is in S(T ), then
so is the (p, q)-box of T . This implies that T (p, q) < T (p, q + 1) < T (p, q′).
Thus T ◦(p, q) = T (p, q) ≤ T (p, q′) − 2 = T ◦(p, q′). Therefore the weakly
increasingness in the row of T ◦ holds. ¤

From Corollary 2.15, we know that each column of T may contain at most
two boxes in S(T ). So through Step 5 and Step 6, T ◦(p, q) moves up by at most
2 rows. The following lemma tells us how Step 5 and Step 6 move the contents
of T ◦ to get Φ(T ).

Lemma 3.11. If i2 < p+2, then Φ(T )(p, q) = T ◦(p+2, q). If p+2 ≤ i2, then
one of the following cases holds:

Φ(T )(p, q) =





T ◦(p, q) if T ◦(p, q) < k1 and p < i1,

T ◦(p + 1, q) if k1 ≤ T ◦(p + 1, q) < k2 − 1,
k1 ≤ p + 1 ≤ k2 + β and νk2 − µj2 < q ≤ νk1 ,

T ◦(p + 1, q) if T ◦(p + 1, q) < k2 + b− α− 1, i1 ≤ p + 1 ≤ i2,
and λi2 < q ≤ νk2 − µj2 ,

T ◦(p + 2, q) if k2 − 1 ≤ T ◦(p + 2, q), k2 ≤ p + 2 ≤ i2,
and νk2 − µj2 < q ≤ νk2 ,

T ◦(p + 2, q) if k2 + b− α− 1 ≤ T ◦(p + 2, q),
k2 + β ≤ p + 2 ≤ i2, and λi2 < q ≤ νk2 − µj2 .

Proof. To get Φ(T ) from T ◦, we first slide empty boxes of (S2) or (S3) in
Definition 2.12 down to the i2th row or to the end of the column, and slide
empty boxes of (S1) down to the i1th row. Then, we remove the empty boxes



EXTENSION OF REDUCTION FORMULA 1217

in i1th, i2th rows and at the end of columns. Thus, boxes of T ◦ that are above
empty boxes of (S1) do not move, and by Lemma 2.13, these boxes are above
the i1th row and their entries are less than k1. Therefore, if T ◦(p, q) < k1 and
p < i1, then Φ(T )(p, q) = T ◦(p, q).

In each column of T ◦ from the (λi2 +1)st column to the (νk2−µj2)th column,
there is exactly one box of (S2) by Lemma 2.13. Note the ωth k1 is on the
(λi1 +1)st column and (ω+1)st k2 +b−α−1 is on the (νk2−µj2)th column by
Lemma 2.8 and Lemma 2.13. Then, because of Lemma 3.2, νk2−µj2 < λi1 +1,
and all boxes in the columns between the (λi2 + 1)st and the (νk2 − µj2)th are
below the (i1 − 1)st row.

Note also from Lemma 2.13 that boxes of (S2) are placed between (k2 +β)th
row and the i2th row. Remember that the entries of the boxes of (S2) are all
k2 + b− α− 1 in T . Thus, if a box is above a box of (S2) in T ◦, then it moves
up by one row, and if a box is below a box of (S2), then it moves up by two
rows. Therefore, in a column between the (λi2 + 1)st and the (νk2 − µj2)th of
T ◦, we have two cases: If T ◦(p+1, q) < k2 + b−α−1 and i1 ≤ p+1 ≤ i2, then
Φ(T )(p, q) = T ◦(p+1, q). If T ◦(p+2, q) ≥ k2+b−α−1 and k2+β ≤ p+2 ≤ i2,
then Φ(T )(p, q) = T ◦(p + 2, q).

We now consider columns of T ◦ from the (νk2−µj2+1)st to the end. Similarly
as above, a box in the column which is between a box of (S1) and a box of
(S2) in the same column will move up by one row, and a box which is below a
box of (S2) will move up by two rows. Thus, if k1 ≤ T ◦(p + 1, q) < k2 − 1 and
k1 ≤ p+1 ≤ k2 +β, then Φ(T )(p, q) = T ◦(p+1, q), and if k2−1 ≤ T ◦(p+2, q)
and k2 ≤ p + 2 ≤ i2, then Φ(T )(p, q) = T ◦(p + 2, q). ¤

We now prove the row increasingness of Φ(T ) by means of Lemma 3.8 and
Lemma 3.11.

Proposition 3.12. Φ(T ) is weakly increasing in rows.

Proof. Note T ◦ is weakly increasing in rows if we ignore empty boxes. Also Step
5 and Step 6 in Definition 2.23 only affect the row increasingness in the rows
from the k1th row to i2th row of T ◦. Thus, it is enough to compare Φ(T )(p, q)
and Φ(T )(p, q + 1) for k1 ≤ p ≤ i2 − 2. By Corollary 2.15, we consider the
following nine cases:

Case 1) Φ(T )(p, q) = T ◦(p, q) and Φ(T )(p, q + 1) = T ◦(p, q + 1).
Case 2) Φ(T )(p, q) = T ◦(p + 1, q) and Φ(T )(p, q + 1) = T ◦(p + 1, q + 1).
Case 3) Φ(T )(p, q) = T ◦(p + 2, q) and Φ(T )(p, q + 1) = T ◦(p + 2, q + 1).
Case 4) Φ(T )(p, q) = T ◦(p, q) and Φ(T )(p, q + 1) = T ◦(p + 1, q + 1).
Case 5) Φ(T )(p, q) = T ◦(p + 1, q) and Φ(T )(p, q + 1) = T ◦(p + 2, q + 1).
Case 6) Φ(T )(p, q) = T ◦(p, q) and Φ(T )(p, q + 1) = T ◦(p + 2, q + 1).
Case 7) Φ(T )(p, q) = T ◦(p + 1, q) and Φ(T )(p, q + 1) = T ◦(p, q + 1).
Case 8) Φ(T )(p, q) = T ◦(p + 2, q) and Φ(T )(p, q + 1) = T ◦(p, q + 1).
Case 9) Φ(T )(p, q) = T ◦(p + 2, q) and Φ(T )(p, q + 1) = T ◦(p + 1, q + 1).
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In Case 1), Case 2), and Case 3), Φ(T )(p, q) ≤ Φ(T )(p, q + 1) holds because
of Lemma 3.8.

In Case 4), by Lemma 3.11, T ◦(p, q) < k1 and p < i1 because Φ(T )(p, q) =
T ◦(p, q). Then, by Lemma 3.11 again, p < i1 imply k1 ≤ T ◦(p, q + 1) < k2 − 1
because Φ(T )(p, q + 1) = T ◦(p + 1, q + 1). Thus, Φ(T )(p, q) = T ◦(p, q) < k1 ≤
T ◦(p, q + 1) < T ◦(p + 1, q + 1) = Φ(T )(p, q + 1) holds in Case 4).

Next, we consider Case 5). For q < νk2 − µj2 , by Lemma 3.11, Φ(T )(p, q) =
T ◦(p+1, q) < k2+b−α−1 ≤ T (p+2, q+1) = Φ(T )(p, q+1). For q = νk2−µj2 ,
by Lemma 3.11 again, Φ(T )(p, q) = T ◦(p + 1, q) < k2 + b − α − 1 < k2 − 1 ≤
T ◦(p + 2, q + 1) = Φ(T )(p, q + 1) because b − α ≤ 0. For q > νk2 − µj2 ,
Φ(T )(p, q) = T ◦(p + 1, q) < k2 − 1 ≤ T ◦(p + 2, q + 1) = Φ(T )(p, q + 1).

Next, we consider Case 6). By Lemma 3.11, T ◦(p, q) < k1 and k2 − 1 ≤
T ◦(p + 2, q + 1) or k2 + b− α− 1 ≤ T ◦(p + 2, q + 1). In any case, Φ(T )(p, q) =
T ◦(p, q) ≤ T ◦(p+2, q+1) = Φ(T )(p, q+1) holds because k1 ≤ k2+b−α−1 ≤ k2.

Next, we consider the three cases left. Lemma 2.13 and Lemma 3.2 imply
that if (r, `)-box and (r′, ` + 1)-box of T are boxes of (S1) in Definition 2.12,
then r ≥ r′. Also, if (r, `)-box and (r′, `+1)-box of T are boxes of (S2) or (S3),
then r ≥ r′. Thus, the three cases left do not happen. ¤

Finally, we show that Φ(T ) is an LR-tableau, i.e., the reverse row word
w(Φ(T )) is a lattice word.

Lemma 3.13. Let S be a filling of skew shape which is a disjoint union of
Sw-routes. Then w(S) is a lattice word.

Proof. Take a Sw-route in S and consider s+1 and s in the Sw-route. Because
s + 1 is on the South-west of s, s + 1 will be read later than s in w(S). That
is true for all Sw-route in S, and w(S) is a lattice word. ¤

Example 3.14. The following filling of skew shape (with empty boxes) is a
disjoint union of 4 Sw-routes and its reverse row word is a lattice word, even
though it is not a tableau.

1 1 1 1
2 2 2
3 3

4 4
5 3 2

3 5 4

Proposition 3.15. The reverse row word w(Φ(T )) is a lattice word.

Proof. Due to Corollary 3.5, we can decompose T as a disjoint union of RT (m)
for m = 1, . . . , µ1. Note we apply Step 1 through Step 4 of Definition 2.23
on T to get T ◦. For each m = 1, 2, . . . , µj1 , we let RT (m)◦ be a filling (with
empty boxes) obtained by applying a restriction of these actions on RT (m).
Lemma 3.7 implies that RT (m)◦ is an Sw-route if we ignore empty boxes. It is
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clear that T ◦ is a disjoint union of RT (m)◦’s, and w(T ◦) is a lattice word by
Lemma 3.13.

Next we apply Step 5 and Step 6 in the Definition 2.23 on T ◦. For each
m = 1, 2, . . . , µj1 , we let RT (m)′ be a filling obtained by applying a restriction
of these actions on RT (m)◦. Note that these actions move up boxes in a column
or delete empty boxes. Therefore, if a box at (p, q)-position has ` and a box at
(p′, q′)-position has ` + 1 in RT (m)′, then q ≥ q′. Hence, to show RT (m)′ is an
Sw-route, it is enough to show that p < p′.

However, p ≥ p′ together with q ≥ q′ will break the weakly increasingness
in rows, which is contradict to Proposition 3.12. Therefore, each RT (m)′ is
an Sw-route in Φ(T ), even though RT (m)′ is not RΦ(T )(m), a collection of the
boxes in Φ(T ) containing the mth `’s in w(Φ(T )). Now the proposition comes
from Lemma 3.13. ¤

Appendix

In this appendix, we use a known bijection between LR-tableaux and LR-
hives (see [14]) to translate the main idea of our proof into the language of
hives.

An n-hive is a graph of equilateral triangular shape with labeled edges as
shown in Figure 2. For partitions λ, µ and ν of lengths at most n, an LR-hive
of type (λ, µ, ν) is an n-hive with nonnegative integer (edge) labels and the
boundary labels are determined by λ, µ, ν as shown in Figure 3, satisfying the
following condition; for each rhombus in Figure 4, s ≥ t, u ≥ v, and in each
triangle the sum of two values on oblique sides is same as the value on the
horizontal side, and which imply that s + v = u + t. We use notations aij(H),
bij(H) and cij(H) for edge labels of a hive H as shown in Figure 2.

c11 c21 c31 c41

c12 c22 c32

c13 c23

c14

a11 a21 a31 a41

a12 a22 a32

a13 a23

a14

b11 b21 b31 b41

b12 b22 b32

b13 b23

b14

Figure 2: 4-hive

ν1 ν2 ν3 ν4

λ1

λ2

λ3

λ4 µ1

µ2

µ3

µ4

Figure 3: LR-hive

Proposition 4.1 (See [1]). For given partitions λ, µ, ν, Littlewood-Richardson
coefficient cν

λµ is the number of LR-hives of type (λ, µ, ν).

A bijection between LR-tableaux and LR-hives is outlined in [14] (see also
[1, Appendix A]). Under this bijection, for an LR-hive H corresponding to an
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s

u

t

v

(a)

v s

ut

(b)

s

u

t

v

(c)

Figure 4: rhombus conditions

LR-tableau T on the shape ν/λ, we have

apq(H) =
p−1∑

`=0

np+q−1
T (`),

bpq(H) =
p+q−1∑

h=1

nh
T (p) =

p+q−1∑

h=p

nh
T (p),

cpq(H) = apq(H) + bpq(H),

where nh
T (0) is set to λh. With these observations, Equations (2.9), (2.10) and

(2.11) of Proposition 2.8, which are crucial ingredients for our bijection, are
translated into the following conditions:

b` β+1 = µj2 for ` = k2, k2 + 1, . . . , j2,(4.2)

b` α+2 = µj1 for ` = k2 + b− α− 1, k2 + b− α, . . . , j1,(4.3)

b` a+1 = ω = νk1 − λi1 for ` = k1, k1 + 1, . . . , k2 + b− α− 1.(4.4)

Note that these equalities say that some consecutive edge labels are constant
across rhombi which are shown as in Figure 4 (a). In the proof of the KTT the-
orem [15], King, Tollu, and Toumazet show that, in some consecutive rhombi
which are making corridors, opposite edge labels are constant along corridors;
s = t and u = v hold. In fact, b` β+1’s in (4.2), b` α+2’s in (4.3) and b` a+1’s
in (4.4) form a part of edges of these corridors, respectively. Basically the bi-
jection in [15] is obtained by deleting these corridors and rearranging the rest
part of the hive to create a smaller LR-hive (in the case of reduction formulae).
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