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SETS AND VALUE SHARING OF q-DIFFERENCES OF

MEROMORPHIC FUNCTIONS

Xiao-Guang Qi and Lian-Zhong Yang

Abstract. In this paper, we investigate uniqueness problems of certain
types of q-difference polynomials, which improve some results in [20].
However, our proof is different from that in [20]. Moreover, we obtain a
uniqueness result in the case where q-differences of two entire functions
share values as well. This research also shows that there exist two sets,
such that for a zero-order non-constant meromorphic function f and a
non-zero complex constant q, E(Sj , f) = E(Sj ,∆qf) for j = 1, 2 imply
f(z) = t∆qf , where tn = 1. This gives a partial answer to a question of

Gross concerning a zero order meromorphic function f(z) and ∆qf .

1. Introduction

In what follows, a meromorphic function will always mean meromorphic in
the whole complex plane. We say that two meromorphic functions f and g share
a value a ∈ C∪{∞} IM (ignoring multiplicities) when f −a and g−a have the
same zeros. If f −a and g−a have the same zeros with the same multiplicities,
then we say that f and g share the value a CM (counting multiplicities). We
assume that the reader is familiar with the standard symbols and fundamental
results of Nevanlinna theory, as found in [12].

As usual, by S(r, f) we denote any quantity satisfying S(r, f) = o(T (r, f))
for all r outside of a possible exceptional set of finite linear measure. In partic-
ular, we denote by S1(r, f) any quality satisfying S1(r, f) = o(T (r, f)) for all
r on a set of logarithmic density 1. Moreover, we denote ∆qf = f(qz)− f(z),
where q ∈ C \ {0, 1}.

The Nevanlinna theory of q-difference expressions and its applications to
q-difference equations have recently been considered (see [1, 6]). In addition,
some results about solutions of zero-order for complex q-difference equations,
can be found in the introduction in [1].

Applying the q-difference analogue of logarithmic derivative lemma, see
[1, Theorem 1.1] (Lemma 2.1 in Section 2), Zhang and Korhonen [20] stud-
ied the relation between T (r, f) and T (r, f(qz)) and concluded T (r, f(qz)) =
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(1 + o(1))T (r, f(z)) on a set of lower logarithmic density 1, where f is zero-
order meromorphic function. Moreover, They have given an example to show
that the zero-order growth restriction in their result above is essentially the
best possible, see Remark 1 in [20]. They considered the problem of value dis-
tribution and value sharing of q-differences polynomials as well. In fact, they
got:

Theorem A. Let f(z) and g(z) be two transcendental meromorphic (resp.
entire) functions of zero-order. Suppose that q is a non-zero complex constant

and n is an integer satisfying n ≥ 8 (resp. n ≥ 4). If f(z)nf(qz) and g(z)ng(qz)
share 1, ∞ CM , then f(z) = tg(z) for tn+1 = 1.

Theorem B. Let f(z) and g(z) be two transcendental entire functions of zero-

order. Suppose that q is a non-zero complex constant and n ≥ 6 is an integer.

If f(z)n(f(z)−1)f(qz) and g(z)n(g(z)−1)g(qz) share 1 CM , then f(z) = g(z).

Now it is natural to ask whether CM value sharing can be replaced by IM
value sharing in Theorems A and B? The reminder of this paper is organized
as follows: Firstly, we give a positive answer to the above question in Section
3 provided the assumption on n is tightened. Then, in Section 4 we prove
some uniqueness results for a meromorphic function f sharing some sets with
its shift ∆qf , and in Section 5 we obtain some uniqueness results in the case
where q-differences of two entire functions share values .

2. Some lemmas

Lemma 2.1 ([1, Theorem 1.1]). Let f(z) be a zero-order meromorphic func-

tion, and q ∈ C \ {0}. Then

m

(

r,
f(qz)

f(z)

)

= S1(r, f).

Lemma 2.2 ([20, Theorem 1.1 and Theorem 1.3]). Let f(z) be a zero-order

meromorphic function, and q ∈ C \ {0}. Then

(2.1) T (r, f(qz)) = (1 + o(1))T (r, f(z))

and

(2.2) N(r, f(qz)) = (1 + o(1))N(r, f(z))

on a set of lower logarithmic density 1.

Lemma 2.3 ([13, Theorem 3.1]). Let fj(z)(j = 1, 2, 3) be meromorphic func-

tions that satisfy

3
∑

j=1

fj(z) ≡ 1.
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If f1(z) is not a constant, and

3
∑

j=1

N2(r,
1

fj
) +

3
∑

j=1

N(r, fj) < (λ+ o(1))T (r), r ∈ I,

where 0 ≤ λ < 1, T (r) = max
1≤j≤3

{T (r, fj)}, and I has infinite linear measure,

then either f2(z) = 1 or f3(z) = 1.

Lemma 2.4 ([17, Theorem 1]). Let f(z) and g(z) be two meromorphic func-

tions. If f(z) and g(z) share 1 IM, and if

lim sup
r→∞

N∗(r, f) +N∗(r, g) +N∗(r, 1
f
) +N∗(r, 1

g
)

T (r, f) + T (r, g)
< 1,

where N∗(r, f) = 2N2(r, f)+ 3N(r, f) and r ∈ I, then f(z) = g(z) or f(z)g(z)
= 1.

3. Value sharing of a meromorphic function with its q-difference

Theorem 3.1. Let f(z) and g(z) be two transcendental meromorphic (resp.
entire) functions of zero-order. Suppose that q is a non-zero complex constant

and n is an integer satisfying n ≥ 26 (resp. n ≥ 12). If f(z)nf(qz) and

g(z)ng(qz) share 1 IM , then f = t1g or fg = t2, for some constants t1 and t2
that satisfy tn+1

1 = 1 and tn+1
2 = 1.

Corollary 3.2. Under the assumptions of Theorem 3.1, and if f(z) and g(z)
have at least one pole in common, then f = tg for some constant t that satisfies
tn+1 = 1.

Corollary 3.3. Under the assumptions of Theorem 3.1, and if f(z) and g(z)
share ∞ IM , then f = tg for some constant t that satisfies tn+1 = 1.

Theorem 3.4. Let f(z) and g(z) be two transcendental meromorphic functions

of zero-order. Suppose that q is a non-zero complex constant such that |q| 6= 1
and n is an integer satisfying n ≥ 30. If f(z)n(f(z)−1)f(qz) and g(z)n(g(z)−
1)g(qz) share 1 IM , and f(z) and g(z) share ∞ IM , then f(z)n(f(z) −
1)f(qz) = g(z)n(g(z)− 1)g(qz).

Remarks. (1) One might be tempted to want to simplify the conclusion of
Theorem 3.4 to conclude f = g, as in Theorem B, but the form in Theorem
3.4 may be the best possible. In fact, in the PhD dissertation of Zhang [19] (in
Chinese), he gave a counter-example that

f(z) =
P (z)n+1P (qz)− P (z)

P (z)n+1P (qz)− 1
, g(z) =

P (z)nP (qz)− 1

P (z)n+1P (qz)− 1
,

where q is a non-zero complex constant and n is a positive integer, P (z) is
non-constant entire function of zero-order. By calculation, we get f(z)n(f(z)−
1)f(qz) = g(z)n(g(z)− 1)g(qz). Hence f(z)n(f(z)− 1)f(qz) and g(z)n(g(z)−
1)g(qz) satisfy the condition of Theorem 3.4, but f(z) 6= g(z).
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(2) In this section, the assumption that CM is changed into IM , provided
that at the same time assumption on n is tightened. However, the question of
the sharpness of the lower bound for n is inevitable raised, but now we cannot
give examples to show the assumptions on n in Theorem 3.1 and Theorem 3.4
are sharp.

Although we cannot get f(z) = g(z) in Theorem 3.4 for meromorphic func-
tions, when f(z) and g(z) are entire, we obtain the following result.

Theorem 3.5. Let f(z) and g(z) be two transcendental entire functions of

zero-order. Suppose that q is a non-zero complex constant and n is an integer

satisfying n ≥ 16. If f(z)n(f(z) − 1)f(qz) and g(z)n(g(z) − 1)g(qz) share 1

IM , then f(z) = g(z).

Proof of Theorem 3.1. Let F (z) = f(z)nf(qz) and G(z) = g(z)ng(qz). Thus,
F and G share the value 1 IM .

Case 1. Suppose that f and g are meromorphic. From Lemma 2.2, we get

nT (r, f) = T (r, fn) = T (r,
F

f(qz)
)

≤ T (r, F ) + T (r, f(qz)) + S(r, f)

≤ T (r, F ) + T (r, f) + S1(r, f),

that means

(3.1) T (r, F ) ≥ (n− 1)T (r, f) + S1(r, f).

Using the same way, we have

(3.2) T (r,G) ≥ (n− 1)T (r, g) + S1(r, g).

Now we will evaluate the counting functions of F and G. From the definition
of F and Lemma 2.2, we get

N2(r,
1

F
) ≤ 2N(r,

1

f
) +N(r,

1

f(qz)
) + S(r, f)

≤ 3T (r, f) + S1(r, f),
(3.3)

and

N(r,
1

F
) ≤ N(r,

1

f
) +N(r,

1

f(qz)
) + S(r, f)

≤ 2T (r, f) + S1(r, f).
(3.4)

Combining (3.3) and (3.4), we know that

(3.5) N∗(r,
1

F
) ≤ 12T (r, f) + S1(r, f).
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Similarly, we can get

N∗(r,
1

G
) ≤ 12T (r, g) + S1(r, g),

N∗(r, F ) ≤ 12T (r, f) + S1(r, f),

N∗(r,G) ≤ 12T (r, g) + S1(r, g).

(3.6)

Combining (3.5) and (3.6), we know

N∗(r, F ) +N∗(r,G) +N∗(r,
1

F
) +N∗(r,

1

G
)

≤ 24(T (r, f) + T (r, g)) + S1(r, f) + S1(r, g).

From (3.1) and (3.2), we get

N∗(r, F ) +N∗(r,G) +N∗(r, 1
F
) +N∗(r, 1

G
)

T (r, F ) + T (r,G)
< 1,

when n ≥ 26. By Lemma 2.4, we can get

F = G or FG = 1.

When F = G, that is, f(z)nf(qz) = g(z)ng(qz). Let H(z) = f(z)
g(z) . Then we

have

(3.7) H(z)n =
1

H(qz)
.

Assume that H(z) is not a constant, from Lemma 2.2 and (3.7), we have

nT (r,H) = T (r,H(qz)) +O(1) = T (r,H) + S1(r,H),

which is a contradiction to n ≥ 26. Thus, H(z) is a constant, which means
that Hn+1 = 1. Hence f = t1g, t

n+1
1 = 1 follows.

When FG = 1, which implies that

f(z)nf(qz)g(z)ng(qz) = 1.

Set M(z) = f(z)g(z), using the same way as above, we get M(z) must be a
constant. From above equation, we obtain fg = t2 and tn+1

2 = 1.
Case 2. Suppose that f and g are entire. Since now N∗(r, F ) = N∗(r,G) =

0, furthermore from Lemma 2.1, we get

(n+ 1)T (r, f) = T (r, fn+1) = m(r, fn+1)

≤ m(r,
F (z)f(z)

f(qz)
) ≤ m(r, F ) +m(r,

f(z)

f(qz)
) + S(r, f)

≤ T (r, F ) + S1(r, f).

Similarly, we get

T (r,G) ≥ (n+ 1)T (r, g) + S1(r, g).

Similarly as in the case of meromorphic functions, we get the conclusion, com-
pleting the proof of Theorem 3.1. �
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Proof of Theorem 3.4. Let

F (z) = f(z)n(f(z)− 1)f(qz) and G(z) = g(z)n(g(z)− 1)g(qz).

Thus, F and G share the value 1 IM . In the same way as Theorem 3.1, we
can get

T (r, F ) ≥ nT (r, f) + S1(r, f), T (r,G) ≥ nT (r, g) + S1(r, g),

N∗(r,
1

F
) ≤ 17T (r, f) + S1(r, f), N∗(r,

1

G
) ≤ 17T (r, g) + S1(r, g),

N∗(r, F ) ≤ 12T (r, f) + S1(r, f), N∗(r,G) ≤ 12T (r, g) + S1(r, g).

(3.8)

By Lemma 2.4, we can get

F = G or FG = 1,

when n ≥ 30.
In the following, we will prove that the case FG = 1 does not occur. Oth-

erwise, we assume that FG = 1, which means

(3.9) f(z)n(f(z)− 1)f(qz)g(z)n(g(z)− 1)g(qz) = 1.

Set h(z) = f(z)g(z), then (3.9) can be rewritten as

(3.10)
(

h(z)n+1 − h(z)n(f(z) + g(z)) + h(z)n
)

h(qz) = 1.

If h(z) is not a constant. Suppose that there exists a point z0 such that h(z0) =
0, that is f(z0)g(z0) = 0. From f and g share ∞ IM , we get f(z0) 6= ∞ and
g(z0) 6= ∞. By (3.10), we conclude that h(qz0) = ∞. Hence,

(3.11) h(z) = 0 ⇒ h(qz) = ∞.

Next, we suppose that there is a point z1 such that h(qz1) = 0, from (3.10), we
easily get h(z1) = ∞, which means

(3.12) h(qz) = 0 ⇒ h(z) = ∞.

Assume h(z2) = ∞, and z2 is a pole of f with multiplicity p and a pole of g
with multiplicity q. Easily, we know z2 is a pole of h(z)n+1, h(z)n(f(z)+ g(z))
with multiplicity (n+ 1)(p+ q), n(p+ q) +max(p, q), respectively. That is, z2
is a pole of (h(z)n+1 − h(z)n(f(z) + g(z)) + h(z)n) as well. Hence h(qz2) = 0,
which implies that

(3.13) h(z) = ∞ ⇒ h(qz) = 0.

If h(qz) = ∞ ⇒ h(z) 6= 0, then from (3.11) and (3.13)

h(qz) = ∞ ⇒ h(q2z) = 0 ⇒ h(q3z) = ∞ ⇒ h(q2z) 6= 0,

which is impossible. Therefore,

(3.14) h(qz) = ∞ ⇒ h(z) = 0.

Case 1. If |q| < 1, then from (3.11) and (3.13)

h(z) = 0 ⇒ h(qz) = ∞ ⇒ h(q2z) = 0 · · · ⇒ h(q2kz) = 0 ⇒ h(q2k+1z) = ∞· · · .
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From above equation, we get

0 = lim
z→0

h(z) = ∞,

which is a contradiction.

Case 2. If |q| > 1, then from (3.12) and (3.14), we get

h(qz) = 0 ⇒ h(z) = ∞ ⇒ h(
z

q
) = 0 · · · ⇒ h(

z

q2k
) = ∞ ⇒ h(

z

q2k+1
) = 0 · · · .

From above equation, we also get

0 = lim
z→0

h(z) = ∞,

which is a contradiction.
Therefore, we get h(z) must be a non-zero constant t, that is fg = t. Since

f and g share ∞ IM , we can easily get f and g have no zeros and no poles.
That means the orders of f and g are not less than 1, which contradicts the
assumption. Hence, FG = 1 is not possible, which means F = G, that is
f(z)n(f(z)−1)f(qz) = g(z)n(g(z)−1)g(qz). We get the conclusion, completing
the proof of Theorem 3.4. �

Proof of Theorem 3.5. Suppose that f and g are entire. Using the same way
as Theorem 3.4 and simple calculations, we get that

f(z)n(f(z)− 1)f(qz)g(z)n(g(z)− 1)g(qz) = 1,

or

f(z)n(f(z)− 1)f(qz) = g(z)n(g(z)− 1)g(qz).

when n ≥ 16.
If f(z)n(f(z)− 1)f(qz)g(z)n(g(z)− 1)g(qz) = 1, then we get

N(r, f) = N(r,
1

f
) = N(r,

1

f − 1
) = 0,

which is a contradiction.
If f(z)n(f(z)−1)f(qz) = g(z)n(g(z)−1)g(qz), then the assertion now follows

the proof in [20, p. 543], we get f(z) = g(z). �

4. Set sharing of a meromorphic function with its q-difference

For a non-constant meromorphic function f and a set S of complex numbers,
we define the set E(S, f) =

⋃

a∈S{z | f(z)− a = 0}, where a zero of f − a with
multiplicity m counts m times in E(S, f). In 1976, Gross asked the following
question [3, Question 6]:

Question. Can one find (even one set) finite sets Sj (j = 1, 2) such that any
two entire functions f and g satisfying E(Sj , f) = E(Sj , g) (j = 1, 2) must be
identical?
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Since then, many results have been obtained for this and related topics
(see [2, 14, 15, 16]). It is well known that there exists a set S containing
seven elements such that if f and g are two non-constant entire functions and
E(S, f) = E(S, g), then f = g. There are some uniqueness results related to
the case when two functions share two sets. We recall the following result given
by Gross and Osgood.

Theorem C ([4]). Let S1 = {1,−1}, S2 = {0}. If f and g are non-constant

entire functions of finite order such that E(Sj , f) = E(Sj , g) for j = 1, 2, then
f = ±g or fg = 1.

Many authors considered the condition that removed the order restriction
and we just recall the next result for meromorphic functions.

Theorem D ([18]). Let S1 = {1, ω, . . . , ωn−1} and S2 = {∞}, where ω =
cos(2π/n) + i sin(2π/n) and n ≥ 6 be a positive integer. Suppose that f and

g are non-constant meromorphic functions such that E(Sj , f) = E(Sj , g) for

j = 1, 2, then f = tg or fg = t, where tn = 1.

If g is replaced by q-difference of f in Theorem D, in a recent paper, the
present authors considered shared sets problem for f(z) and its q-difference
f(qz), the result may be stated as follows:

Theorem E ([9]). Let S1, S2 be given as in Theorem D. Suppose f is a non-

constant zero-order meromorphic (resp. entire) function such that

E(Sj , f(z)) = E(Sj , f(qz)) for j = 1, 2, and q ∈ C \ {0}.

If n ≥ 4 (resp. n ≥ 3), then f(z) = tf(qz), tn = 1 and |q| = 1.

In this paper, we replace f(qz) with ∆qf , and consider shared sets problem
for f(z) and ∆qf . We get the following results:

Theorem 4.1. Let S1, S2 be given as in Theorem D. Suppose f is a non-

constant zero-order meromorphic function such that E(Sj , f(z)) = E(Sj ,∆qf)
for j = 1, 2, and q ∈ C \ {0}. If n ≥ 5, then f(z) = t∆qf , where tn = 1.

Using the same proof of Theorem 4.1, we get:

Corollary 4.2. Theorem 4.1 still holds if f is a non-constant zero-order entire

function and n ≥ 3.

Corresponding to Corollary 4.2, it is natural to consider the case n = 2. The
following result is a partial answer as to what may happen if n = 2 in Corollary
4.2.

Theorem 4.3. Let f be a non-constant zero-order entire function and q ∈
C \ {0}. If f(z) and ∆qf share the set {a, b} CM , where a, b are two distinct

constants, then f(z) = ∆qf .

Corollary 4.4. Under the condition of Theorem 4.3, if f(z) and ∆qf share

the set {1,−1} CM , then f(z) = ∆qf .



SET AND VALUE SHARING OF A MEROMORPHIC FUNCTION 739

Remarks. (1) Let f(z) = z+3 and q = −1. Then f(qz) = f(−z) = −z+3 and
∆qf = −2z. We get f(z) and ∆qf share 2 CM , however, the conclusion of
Theorem 4.3 does not hold. This example shows that Theorem 4.3 cannot hold
when the sharing set contains only one element, which means the assumption
of Theorem 4.3 is sharp.

(2) From Corollary 4.2 and Corollary 4.4, we obtain that Theorem 4.1 still
holds if f is a non-constant zero-order entire function and n ≥ 2. Furthermore,
the assumption n ≥ 2 is sharp by the example in Remark (1).

(3) Let f(z) = z and q = 2. Then f(qz) = f(2z) = 2z and ∆qf = z. Easily,
we get that f(z) and ∆qf share {1,−1} CM . This implies that in this section,
we cannot get |q| = 1 as in Theorem E.

Proof of Theorem 4.1. The main idea of this proof is from Theorem E, while
the details are somewhat different. For the convenience of the reader, we give
a complete proof here. From the assumption of Theorem 4.1, we know f(z)n

and (∆qf)
n share 1 and ∞ CM , we obtain that

(4.1)
(∆qf)

n − 1

f(z)n − 1
= C,

where C is a non-zero constant. Rewrite (4.1) as

(4.2) (∆qf)
n = C(f(z)n − 1 +

1

C
).

Set

H(z) =
f(z)n

1− 1
C

.

If C 6≡ 1, then we apply the second main theorem to H(z), and get
(4.3)
nT (r, f) + S(r, f) = T (r,H)

≤ N

(

r,
1

H

)

+N(r,H) +N

(

r,
1

H − 1

)

+ S(r,H)

≤ N

(

r,
1

f

)

+N(r, f) +N

(

r,
1

f(z)n − 1 + 1
C

)

+ S(r, f)

≤ N

(

r,
1

f

)

+N(r, f) +N

(

r,
1

∆qf

)

+ S(r, f)

≤ 2T (r, f) + T (r, f(qz)− f(z)) + S(r, f).

Combining (4.3) with Lemma 2.2, we get

nT (r, f) ≤ 4T (r, f) + S1(r, f),

which contradicts n ≥ 5. Therefore, C ≡ 1, that is, f(z)n = (∆qf)
n, so we

have f(z) = t∆qf , for a constant t with tn = 1. �
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Proof of Corollary 4.2. Using a similar way of Theorem 4.1, equation (4.3)
follows. By the assumption that f(z) is entire, we have

nT (r, f) ≤ T (r, f) +m(r, f(qz)− f(z)) + S(r, f),

≤ T (r, f) +m(r, f) +m(r,
f(qz)− f(z)

f(z)
) + S(r, f).

From the above equation, Lemma 2.1 and Lemma 2.2, we get

nT (r, f) ≤ 2T (r, f) + S1(r, f),

which contradicts n ≥ 3. The assertion now follows as in Theorem 4.1. �

Proof of Theorem 4.3. Set

F (z) = f(z)−
a+ b

2
, G(z) = ∆qf −

a+ b

2
.

From the assumption that f(z) and ∆qf share {a, b} CM, we obtain that F (z)

and G(z) share {d,−d} CM, where d = a−b
2 . As a and b are distinct, we know

d is a non-zero constant. Since f(z) is an entire function of zero-order it follows
that

(4.4)
(G(z)− d)(G(z) + d)

(F (z)− d)(F (z) + d)
=

(∆qf − a)(∆qf − b)

(f − a)(f − b)
= C2,

where C is a non-zero constant.
Case 1. C2 ≡ 1. From (4.4), we have

(f(qz)− a− b)(∆qf − f(z)) = 0,

which implies that ∆qf = f(z), we get the conclusion.
Case 2. C2 6≡ 1. Let h1(z) = F (z)− 1

C
G(z), h2(z) = F (z) + 1

C
G(z), then

(4.5) F (z) =
1

2
(h1 + h2), G(z) =

C

2
(h2 − h1).

And from (4.4), we get

(4.6) h1h2 = (1−
1

C2
)d2.

From equation (4.6) and the condition d is non-zero constant, we get

(4.7) N(r,
1

h1
) = 0, N(r,

1

h2
) = 0.

Combining (4.7) with the fact that h1(z) and h2(z) are zero-order entire func-
tions, we obtain h1 and h2 are non-zero constant. From (4.5), we get f(z) is
a constant, which contradicts the assumption. Hence, only Case 1 of Theorem
4.3 holds, we get the conclusion. �
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5. Value sharing by q-difference of entire functions

The classical results due to Nevanlinna [7] in the uniqueness theory of mero-
morphic functions are the five-point, resp. four-point, theorems:

Theorem F. If two non-constant meromorphic functions f(z) and g(z) share
five distinct values a1, a2, a3, a4, a5 ∈ C ∪ {∞} IM, then f ≡ g.

Theorem G. If two non-constant meromorphic functions f(z) and g(z) share
four distinct values a1, a2, a3, a4 ∈ C ∪ {∞} CM, then f ≡ g or f ≡ T ◦ g,
where T is a Möbius transformation.

In [8], we considered the uniqueness problem in the case when f(z) shares
values with f(qz) for a zero-order meromorphic function f(z). We got the
following results:

Theorem H. Let f(z) be a non-constant zero-order meromorphic function,

and q ∈ C \ {0}, and let a1, a2, a3 ∈ C ∪ {∞} be three distinct values. If f(z)
and f(qz) share a1, a2 CM and a3 IM, then f(z) = f(qz) and |q| = 1.

Theorem I. Let f(z) be a non-constant zero-order entire function, q ∈ C\{0},
and let a1, a2 ∈ C be two distinct values. If f(z) and f(qz) share a1 and a2
IM, then f(z) = f(qz) and |q| = 1.

As applications of Theorem H and Theorem I, we get the following two
results:

Theorem 5.1. Let f(z) and g(z) be two meromorphic functions with f(z) of

zero-order, q ∈ C \ {0}, and let a1, a2, a3 ∈ C ∪ {∞} be three distinct values.

Suppose that f(z) and g(z) share a1, a2 CM and a3 IM. If f(z) = f(qz), then
g(z) = g(qz), and |q| = 1.

Theorem 5.2. Let f(z) and g(z) be two entire functions with f(z) of zero-

order, q ∈ C \ {0}, and let a1, a2 ∈ C be two distinct values. Suppose that f(z)
and g(z) share a1 and a2 IM. If f(z) = f(qz), then g(z) = g(qz), and |q| = 1.

In 1976, Yang [11] proposed the following problem.
Suppose that f(z) and g(z) are two transcendental entire functions such that

f(z) and g(z) share 0 CM and f ′ and g′ share 1 CM . What can be said about

the relationship between f(z) and g(z)?
Shibazaki [10] proved the following result.

Theorem K. Suppose that f(z) and g(z) are entire functions of finite order

such that f ′ and g′ share 1 CM . If δ(0, f) ≥ 0 and 0 is a Picard value of g(z),
then either f(z) = g(z) or f ′g′ = 1.

The following result can be seen as a q-difference counterpart to Theorem
K.

Theorem 5.3. Suppose that f(z) and g(z) are two non-constant entire func-

tions of zero-order, and let a and b be distinct constants such that δ(a) =
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δ(a, f) + δ(a, g) > 1. If f(q1z) and g(q2z) share b CM, then f(z) = g(qz),
where q = q2

q1
and q1, q2 are non-zero complex constants.

Proof of Theorem 5.1. From the proof of Theorem H, we obtain that f(z) and
g(z) share 0, ∞ CM and 1 IM by some transformations. By the second main
theorem, we know

T (r, g) ≤ N(r, g) +N(r,
1

g
) +N(r,

1

g − 1
) + S(r, g)

≤ N(r, f) +N(r,
1

f
) +N(r,

1

f − 1
) + S(r, g)

≤ 3T (r, f) + S(r, g).

Similarly,
T (r, f) ≤ 3T (r, g) + S(r, f).

Combining the above two estimates, we obtain σ(f) = σ(g) = 0, where σ(f) is
the order of f(z). Since f(z) and g(z) share 0, ∞ CM, and f(z) and g(z) are
zero-order, it follows that

f(z)

g(z)
= C,

and
f(qz)

g(qz)
= C.

From the above two equations and the condition that f(z) = f(qz), we deduce
that g(z) = g(qz). Using the same way of Theorem H, we get |q| = 1. This
completes the proof of Theorem 5.1. �

Proof of Theorem 5.2. Using a similar proof of Theorem 5.1, we conclude that
σ(f) = σ(g) = 0 as well. By the assumption, we know, if there exists a point
z0 such that g(z0) = ai, then f(z0) = ai, where i = 1, 2. As f(z) = f(qz), we
get f(qz0) = ai, hence g(qz0) = ai. Similarly, if g(qz1) = ai, we can obtain
g(z1) = ai. Therefore, we get that zero-order entire functions g(z) and g(qz)
share a1 and a2 IM. By Theorem I, we know g(z) = g(qz), where |q| = 1. �

Proof of Theorem 5.3. The former part of Theorem 5.3 follows by using the
same reasoning as in [5] with apparent modification. For the convenience of
the reader, we give a complete proof. �

From δ(a) > 1, we can easily get δ(a, f) > 0 and δ(a, g) > 0. Now we
take a positive number ε such that (2 + 2ε − δ(a)) < 1, δ(a, f) − ε > 0 and
δ(a, g)− ε > 0. Then we have

(5.1) (δ(a, f)− ε)T (r, f) ≤ m(r,
1

f − a
)

and

(5.2) (δ(a, g)− ε)T (r, g) ≤ m(r,
1

g − a
)
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as r → ∞. By Lemma 2.1, we deduce that

(5.3) m(r, f(q1z)) ≤ m(r, f) + S1(r, f),

and

(5.4) m(r,
1

f − a
) ≤ m(r,

1

f(q1z)− a
) + S1(r, f).

Set

(5.5) F (z) =
f(q1z)− a

b− a
, G(z) =

g(q2z)− a

b− a
.

From (5.1), (5.3)-(5.5), we get

(5.6)

(δ(a, f)− ε)T (r, f) ≤ m(r,
1

f(q1z)− a
) + S1(r, f)

≤ T (r, f(q1z)) + S1(r, f)

≤ T (r, F ) + S1(r, f) ≤ T (r, f) + S1(r, f).

Similarly,

(5.7) (δ(a, g)− ε)T (r, g) ≤ T (r,G) + S1(r, g) ≤ T (r, g) + S1(r, g).

Hence

S1(r, F ) = S1(r, f), S1(r,G) = S1(r, g).

Again from (5.1) and (5.4), we obtain that

(5.8)

(δ(a, f)− ε)T (r, F ) ≤ (δ(a, f)− ε)T (r, f) + S1(r, f)

≤ m(r,
1

f(q1z)− a
) + S1(r, f)

≤ T (r, F )−N(r,
1

F
) + S1(r, f).

So we have

(5.9) N(r,
1

F
) ≤ (1− δ(a, f) + ε)T (r, F ).

By the same reasoning, we get

(5.10) N(r,
1

G
) ≤ (1− δ(a, g) + ε)T (r,G).

Since f(q1z) and g(q2z) share b CM, we obtain that,

(5.11)
f(q1z)− b

g(q2z)− b
= C,

where C is a non-zero constant. From (5.11) we have

F (z)−G(z)C + C ≡ 1.

Set F1(z) = F (z), F2(z) = G(z)C, F3(z) = C. Then

F1 + F2 + F3 = 1,



744 XIAO-GUANG QI AND LIAN-ZHONG YANG

and

T (r) = max
1≤j≤3

{T (r, Fj)}, S(r) = o(T (r)).

From (5.9) and (5.10), we get

3
∑

j=1

N2(r,
1

Fj

) +

3
∑

j=1

N(r, Fj) ≤ N(r,
1

F
) +N(r,

1

G
) + S(r)

≤ (2 + 2ε− δ(a))T (r) + S(r).

By Lemma 2.3, we get that F2 = 1 or F3 = 1. If F2 = 1, then we get G(z) is a
constant, which is a contradiction; while if F3 = 1, the conclusion holds.
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