# SOME PROPERTIES OF THE SET OF SCHWARZIANS OF CONFORMAL FUNCTIONS

## JONG SU AN AND TAI SUNG SONG

ABSTRACT. Let U denote the set of all Schwarzian derivatives  $S_f$  of conformal function f in the unit disk  $\mathbf{D}$ . We show that if  $S_f$  is a local extreme point of U, then f cannot omit an open set. We also show that if  $S_f \in U$  is an extreme point of the closed convex hull  $\overline{co}U$  of U, then f cannot omit a set of positive area. The proof of this uses Nguyen's theorem.

### 1. Introduction

In this paper,  $E = E(\mathbf{D})$  will denote the Banach space of holomorphic functions  $\psi$  in the unit disk  $\mathbf{D} = \{z : |z| < 1\}$ , equipped with the norm

(1) 
$$||\psi|| = ||\psi||_{\mathbf{D}} = \sup_{z \in \mathbf{D}} |\psi(z)| (1 - |z|^2)^2.$$

We define Banach space E by

$$E = \{ \psi : \psi : \mathbf{D} \to \mathbf{C} \text{ holomorphic}, ||\psi|| < \infty \}.$$

Next for each function f which is meromorphic and locally univalent in **D** we let  $S_f$  denote the Schwarzian derivative of f. At finite points of **D** which are not poles of f,  $S_f(z)$  is given by

$$S_f(z) = (f''(z)/f'(z))' - (1/2)(f''(z)/f'(z))^2$$

and it is holomorphic in **D**. Direct computation gives the transformation rule

(2) 
$$S_{f \circ g}(z) = S_f(g(z))g'(z)^2 + S_g(z).$$

Received December 28, 1995. Revised June 21, 1996.

<sup>1991</sup> AMS Subject Classification: 30C35, 30C99.

Key words and phrases: univalent function, extreme point, Schwarzian derivative, Lipschitz function.

If T is a Möbius transformation, we have  $S_T = 0$ , and so  $S_{f \circ T}(z) = S_f(T(z))T'(z)^2$ .

Let U denote the set of all Schwarzian derivatives  $S_f$  of conformal function f from  $\mathbf{D}$  into the Riemann sphere  $\hat{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$ . Here, and in the rest of paper, conformal means holomorphic and univalent. It turns out that  $U \subseteq E$ ; in fact U is a closed set in E [9,p.115]. Furthermore, U is contained in the closure of the ball  $B(0,6) = \{\psi \in E : ||\psi|| < 6\}$  and U contains the closure of B(0,2) ([7],[10]). The set U has been of some interest due to its connection with the Bers model

$$Q = \{S_f \in U : f \text{ has quasiconformal extention to } \hat{\mathbf{C}}\}\$$

of the universal Teichmüller space. It was shown by [1] that Q is open, and the relationship between U and Q was clarified by [3], who showed that Q = int(U).

It was for a long time an open question, due to Bers, whether U is equal to the closure of Q in E. This was disproved by [4], who showed by an example that  $U - \overline{Q} \neq \phi$ . Recently, Thurston[14] proved that in fact, U has isolated points.

In [12], we know that the omitted set of a conformal map f from  $\mathbf{D}$  into  $\mathbf{C}$  has zero area if  $S_f$  is an isolated point of U. The proof uses [11], which is also used in the proof of theorem 4.1 of this paper.

# 2. Extreme points and local extreme points

An extreme point of set  $A \subset E$  is a  $\psi \in A$  such that if  $\psi$  has a convex decomposition  $\psi = t\psi_1 + (1-t)\psi_2$  with 0 < t < 1 and  $\psi_1$ ,  $\psi_2 \in A$ , then  $\psi_1 = \psi_2$ ; i.e., the decomposition is trivial. The set of extreme points of A is denote e(A).

A local extreme point of a set  $A \subseteq E$  is a  $\psi \in A$  such that there exists a  $\delta > 0$  such that  $\psi \in e(\{\varphi \in A : ||\varphi - \psi|| \le \delta\})$ .

We will denote the set of local extreme points of A by le(A). Clearly we have  $e(A) \subseteq le(A)$ , with equality whenever A is convex. But le(A) may contain other points besides extreme points; an isolated point is always a local extreme point, for instance.

We now consider local extreme points of U:

PROPOSITION 2.1. Let  $f, g : \mathbf{D} \to \hat{\mathbf{C}}$  be conformal into, with  $f(\mathbf{D}) \subseteq g(\mathbf{D})$ . If  $S_f \in le(U)$ , then  $S_g \in le(U)$ .

PROOF. By assumption  $f=g\circ T$  where  $T:\mathbf{D}\to\mathbf{D}$  is a conformal automorphism [15,p.39]. Suppose  $S_g\notin le(U)$ . Then  $S_g=tS_{g_1}+(1-t)S_{g_2}$  with  $S_{g_1},S_{g_2}\in U,S_{g_1}\neq S_{g_2},0< t<1,$   $||S_g-S_{g_1}||\leq \delta$  and  $||S_g-S_{g_2}||\leq \delta$ . We have

$$S_{f} = S_{g \circ T} = S_{g}(T)T'^{2} + S_{T}$$

$$= [tS_{g_{1}}(T) + (1 - t)S_{g_{2}}(T)]T'^{2} + S_{T}$$

$$= t[S_{g_{1}}(T)T'^{2} + S_{T}] + (1 - t)[S_{g_{2}}(T)T'^{2} + S_{T}]$$

$$= tS_{g_{1}}\circ T + (1 - t)S_{g_{2}}\circ T.$$

It is clear that  $S_{g_1 \circ T}, S_{g_2 \circ T} \in U$ , and  $S_{g_1 \circ T} \neq S_{g_2 \circ T}$ . Furthermore

$$\begin{split} ||S_{g \circ T} - S_{g_1 \circ T}|| &= ||S_g(T)T'^2 + S_T - S_{g_1}(T)T'^2 - S_T|| \\ &= ||(S_g(T) - S_{g_1}(T))T'^2|| \\ &= \sup_{z \in \mathbf{D}} |S_g(T(z)) - S_{g_1}(T(z))||T'(z)|^2 (1 - |z|^2)^2 \\ &\leq \sup_{z \in \mathbf{D}} |S_g(T(z)) - S_{g_1}(T(z))|(1 - |T(z)|^2)^2 \\ &\leq \sup_{z \in \mathbf{D}} |S_g(z) - S_{g_1}(z)|(1 - |z|^2)^2 \\ &= ||S_g - S_{g_1}|| \leq \delta \end{split}$$

by the Schwarz-Pick lemma [1,p.3]. By the similar method we have  $||S_{g \circ T} - S_{g_2 \circ T}|| \leq \delta$ . Consequently  $S_f \notin le(U)$ . Thus we are finished  $\square$ 

The above theorem is also valid for extreme points of U, of course; the proof is just a subset of the above proof.

THEOREM 2.2. If  $S_f \in le(U)$ , then f cannot omit a nonempty open set.

PROOF. Suppose f omits a nonempty open set. Then it will in particular omit some closed disk  $D_o$ , say. Let g be a Möbius transformation mapping  $\mathbf{D}$  onto  $\hat{\mathbf{C}} - D_o$ . Clearly  $f(\mathbf{D}) \subseteq g(\mathbf{D})$ , so proposition 2.1 would

imply that  $0 = S_g \in le(U)$ , which is false. We can see this by considering the functions  $f_p(z) = [(1+z)/(1-z)]^p$  which are univalent for  $0 . Since <math>S_{f_p}(z) = 2(1-p^2)(1-z^2)^{-2}$ , it follows that  $0 \notin le(U)$ .  $\square$ 

## 3. The hyperbolic metric

Now we give a brief introduction to the hyperbolic metric. We refer the reader [8] and [16] for further details. Let  $\Omega \subset \hat{\mathbf{C}}$  be a simply connected region. A simply connected region  $\Omega$  is called hyperbolic if the complement of  $\Omega$  in  $\hat{\mathbf{C}}$  contains at least three points. By the Uniformization theorem ([2],p.142],[15,p.9]) there exists a holomorphic universal covering projection g of  $\mathbf{D}$  onto  $\Omega$ . Since  $\Omega$  is simply connected, then g is just a conformal function of  $\mathbf{D}$  onto  $\Omega$ . The collection of all holomorphic universal covering projections of  $\mathbf{D}$  onto  $\Omega$  consists of the functions  $g \circ T$ , where  $T \in \operatorname{Aut}(\mathbf{D})$ , the group of conformal automorphisms of  $\mathbf{D}$ . The hyperbolic metric on  $\mathbf{D}$  is defined by

$$\lambda_{\mathbf{D}}(z)|dz| = (1 - |z|^2)^{-1}|dz|.$$

The density  $\lambda_{\Omega}(w)$  of the hyperbolic metric  $\lambda_{\Omega}(w)|dw|$  on a hyperbolic region  $\Omega$  is determined by

(3) 
$$\lambda_{\Omega}(g(z))|g'(z)| = \lambda_{\mathbf{D}}(z) = (1 - |z|^2)^{-1},$$

where w = g(z) is any holomorphic universal covering projection of **D** onto  $\Omega$ . The density of the hyperbolic metric is independent of the choice of the holomorphic universal covering projection g since

$$|T'(z)|(1-|T(z)|^2)^{-1}=(1-|z|^2)^{-1}, z \in \mathbf{D}$$

for any  $T \in \text{Aut}(\mathbf{D})$  [1,p.3]. Using the density  $\lambda_{\Omega}$ , we can define the following norm

(4) 
$$||h||_{\Omega} = \sup_{w \in \Omega} |h(w)| \lambda_{\Omega}(w)^{-2},$$

which is analogous to the norm  $||\psi|| = ||\psi||_{\mathbf{D}}$  from (1). We shall need the following theorem due to [3].

THEOREM 3.1 (GEHRING' THEOREM). If  $f: \Omega \to \hat{\mathbf{C}}$  is conformal into, then  $||S_f||_{\Omega} \leq 12$ .

In the following, m(A) will always denote the Lebesgue planar measure of a set A. We shall also need the theorem of [11]

THEOREM 3.2 (NGUYEN'S THEOREM). If  $\Gamma$  is compact in  $\mathbb{C}$ , with  $m(\Gamma) > 0$ , there exists a nonconstant bounded holomorphic Lipschitz function on  $\hat{\mathbb{C}} - \Gamma$ .

## 4. Extreme points of the closed convex hull

The smallest closed convex set that contains U is called the closed convex hull of U and it is denoted by  $\overline{co}U$ .

THEOREM 4.1. If  $S_f \in U$  and  $S_f \in e(\overline{co}U)$ , then f cannot omit a set of positive area.

PROOF. Let  $S_f \in U$ , and put  $\Omega = f(\mathbf{D}), \Gamma = \hat{\mathbf{C}} - \Omega$ . There is no loss of generality in assuming that  $\infty \in \Omega$ . We shall suppose that  $m(\Gamma) > 0$ , and conclude that  $S_f \notin e(\overline{co}U)$ .

Since  $\Gamma$  is compact with  $m(\Gamma) > 0$ , Nguyen's theorem gives a non-constant bounded holomorphic Lipschitz function F on  $\Omega$ . There is a point  $w_o \in \Omega$  at which  $F'''(w_o) \neq 0$ , otherwise F would be a quadratic polynomial, which is impossible, because F could not then be bounded. By adding a linear term to F if necessary, we may in addition assume that  $F'(w_o) = 0$ . The new F will still be a nonconstant holomorphic Lipschitz function. For convenience, we write  $G = F'F''' - (3/2)F''^2$ .

Let A be the Lipschitz constant of F, and put

$$H_{\theta}(w) = w + re^{i\theta}F(w), \quad \text{with } 0 \le r < 1/A.$$

Then  $H_{\theta}$  is conformal on  $\Omega$ . We have

(5) 
$$S_{H_{\theta}} = (re^{i\theta}F''' + r^2e^{2i\theta}G)/(1 + re^{i\theta}F')^2,$$

and so  $S_{H_{\theta}}$  depends holomorphically on  $re^{i\theta}$ . Thus by the mean value theorem

$$rac{1}{2\pi}\int_0^{2\pi} S_{H_{m{ heta}}}(w) d heta = 0.$$

Using (2), we get

$$\frac{1}{2\pi} \int_0^{2\pi} S_{H_{\theta} \circ f}(z) d\theta = S_f(z)$$

Put

$$\psi_j(z) = rac{1}{\pi} \int_{\pi i - \pi}^{\pi j} S_{H_{\theta} \circ f}(z) d heta \qquad ext{for } j = 1, 2.$$

Then clearly  $S_f = (1/2)\psi_1 + (1/2)\psi_2$ .

Putting r = 1/(2A). By calculation, using  $F'(w_o) = 0$ , we see that

$$\frac{1}{\pi} \int_{\pi i - \pi}^{\pi j} S_{H_{\theta}}(w_o) d\theta = (-1)^{j+1} \frac{i}{\pi A} F'''(w_o) \qquad \text{for } j = 1, 2.$$

These two integrals are not equal at  $w_o \in \Omega$ , and so we conclude that  $\psi_1 \neq \psi_2$ .

To conclude that  $S_f \notin e(\overline{co}U)$ , it remains to show that  $\psi_1, \psi_2 \in \overline{co}U$ . This goes in exactly the same way for  $\psi_1$  and  $\psi_2$ ; we will do it for

$$\psi_1 = \frac{1}{\pi} \int_0^{\pi} S_{H_{\theta} \circ f} d\theta.$$

Since E is a Banach space and  $d\theta/\pi$  is a Borel probability measure, it is enough to show that the mapping  $\theta \mapsto S_{H_{\theta} \circ f}$  is continuous [13, p.74]. For then

$$\psi_1 \in \overline{co}\{S_{H_\theta \circ f} | \theta \in [0, \pi]\} \subseteq \overline{co}U$$

since  $H_{\theta} \circ f$  is conformal.

We have

$$\begin{split} ||S_{H_{\alpha} \circ f} - S_{H_{\beta} \circ f}|| &= \sup_{z \in \mathbf{D}} |S_{H_{\alpha} \circ f}(z) - S_{H_{\beta} \circ f}(z)|(1 - |z|^2)^2 \\ &= \sup_{z \in \mathbf{D}} |S_{H_{\alpha}}(f(z)) - S_{H_{\beta}}(f(z))|\lambda_{\Omega}(f(z))^{-2} \\ &= \sup_{w \in \Omega} |S_{H_{\alpha}}(w) - S_{H_{\beta}}(w)|\lambda_{\Omega}(w)^{-2} \\ &= ||S_{H_{\alpha}} - S_{H_{\beta}}||_{\Omega} \end{split}$$

by (1),(2),(3) and (4). Since F satisfies a Lipschitz condition, the inequality  $|F'(w)| \leq A$  is valid in  $\Omega$ . Furthermore, we have  $S_f(w) \leq 12\lambda_{\Omega}(w)^2$  in  $\Omega$  by the theorem of Gehring. Thus

$$|re^{i\theta}F'''(w) + r^2e^{2i\theta}G(w)| \le |1 + re^{i\theta}F'(w)|^2 12\lambda_{\Omega}(w)^2$$
  
  $\le 12(1 + Ar)^2\lambda_{\Omega}(w)^2$ 

in  $\Omega$ . Putting r = 1/(2A),  $\theta = 0, \pi$ , and this yields

$$|F'''(w)| \le 54A\lambda_{\Omega}(w)^2$$
 and  $G(w) \le 108A^2\lambda_{\Omega}(w)^2$ 

by the triangle inequality. See [12] for this. Using (5) and these inequalities, straightforward calculations give

$$||S_{H_{\alpha}} - S_{H_{\beta}}||_{\Omega} \le 24732|e^{i\alpha} - e^{i\beta}|.$$

Thus  $\theta \mapsto S_{H_{\theta} \circ f}$  is continuous, and the proof of theorem 4.1 is complete.  $\square$ 

REMARKS. The method used in proving theorem 4.1 is a combination of the method from [12], using Nguyen's theorem to produce a family of Schwarzians of univalent functions depending on a parameter, and the use of integration to produce a convex decomposition. Since theorem 4.1 deals with the closed convex hull, it does not supersede the result in [12].

Since U is not convex, theorem 4.1 does not necessarily supersede theorem 2.2 even for extreme points. For there might be some  $S_f \in e(U)$  with  $S_f \notin e(\overline{co}U)$ . What the exact relationship between e(U) and  $e(\overline{co}U)$  is seems to be unknown.

#### References

- 1. L. V. Ahlfors, Quasiconformal Reflections, Acta Math. 109 (1963), 291-301.
- 2. \_\_\_\_\_, Conformal invariant, McGraw Hill, New York, 1973.
- 3. F. W. Gehring, Univalent functions and the Schwarzian derivative, Comment. Math. Helv. 52 (1977), 561-572.
- 4. \_\_\_\_\_, Spirals and the universal Teichmüller space, Acta Math. 141 (1978), 99-113.

- D. H. Hamiton, The extreme points of ∑, Pro. Amer. Math. Soc. 85 (1982), 393-396.
- S. V. Hruscev, A simple proof of the theorem on removable singularities for analytic functions satisfying a Lipschitz condition, Akad. Nauk. XI (1981), 199-203.
- 7. W. Kraus, Über den Zusammenhang einiger Characteristiken eines einfach zusa. mmernhangenden Bereiches mit den Kreisabbildung, Mitt. Math. Sem. Giessen. 21 (1932), 1-28.
- 8. G. M. Glouzin, Geometric theory of function a complex variable, Translations of Mathematical Monographs, Vol.26. Am. Math. Soc., Providence, 1969.
- O. Lehto, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1986.
- Z. Nehari, The Schwarzian derivative and Schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
- 11. X. U. Nguyen, Removable sets of analytic functions satisfying a Lipschitz condition, Ark. Math. 17 (1979), 19-27.
- 12. M. Overholt. The area of the complement of a conformally rigid domain, Pro. Amer. Math. Soc. 103 (1988), 448-450.
- 13. W. Rudin, Functional Analysis, McGraw Hill, New York, 1973.
- 14. W. P.Thurston, Zippers and univalent functions, The Bieberbach Conjecture: Proceedings of the Symposium on the Occasion of the Proof. (1986), 185-197.
- 15. S. D.Fisher, Function theory on plane domains, A second course in Complex Analysis, John Wiley Sons, New York, 1983.
- R. Nevanlinna, Analytic functions, Die Grundlehren der Math Wissen, Band 162, Springer-Verlag, New York, New York, 1970.

Department of Mathematics Education Pusan National University Pusan, 609-735. Korea