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SOME PROPERTIES OF THE SET OF
SCHWARZIANS OF CONFORMAL FUNCTIONS

JONG Su AN AND TAl SUNG SONG

ABSTRACT. Let U denote the set of all Schwarzian derivatives 5; of
conformal function f in the unit disk D. We show that if S is a local
extreme point of U, then f cannot omit an open set. We also show that
if S € U 1s an extreme point of the closed convex hull @GU of U, then
f cannot omit a set of positive area. The proof of this uses Nguyen's
theorem.

1. Introduction

In this paper, £ = E(D) will denote the Banach space of holomorphic
functions % in the unit disk D = {z: |z| < 1}, equipped with the norm

(1) 11l = [[¥llp = sup [p(2)|(1 —[:]*)*.
2€D

We define Banach space F by
E = {¢¥ : ¢ : D — C holomorphic, |[¢|| < oo}

Next for each function f which is meromorphic and locally univalent in
D we let Sy denote the Schwarzian derivative of f. At finite points of
D which are not poles of f, 5¢(z) is given by

Se(z) = (f"()/f'(2)) = (1/2)(f"(2)/f'(2))*

and it is holomorphic in D. Direct computation gives the transformation
rule

(2) Sfog(z) = Sf(g(z))gl(z)z + Sg(z)-
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If T is a Mobius transformation, we have St = 0, and so Sfor(z) =
SH(T(2))T'(2)".

Let U denote the set of all Schwarzian derivasives Sy of conformal
function f from D into the Riemann sphere C = C U {oo}. Here, and in
the rest of paper, conformal means holomorphic and univalent. It turns
out that U C E; in fact U is a closed set in £ [9,p.115]. Furthermore, U
is contained in the closure of the ball B(0,6) = {1' € E : ||¢'|| < 6} and
U contains the closure of B(0,2) ([7],[10]). The set U has been of some
interest due to its connection with the Bers model

Q ={S; €U :f has quasiconformal extention to C
f

of the universal Teichmiiller space. It was shown by [1] that @ is open,
and the relationship between U and @ was clarified by 3], who showed
that Q = int(U).

It was for a long time an open question, due to Bers, whether U is
equal to the closure of @ in E. This was disproved by [4], who showed
by an example that U — Q # ¢. Recently, Thurston[14] proved that in
fact, U has isolated points.

In [12], we know that the omitted set of a conformal map f from D
into C has zero area if Sy is an isolated point of U/. The proof uses
[11],which is also used in the proof of theorem 4.1 of this paper.

2. Extreme points and local extreme points

An extreme point of set A C E isa v € A such that if 4/ has a convex
decomposition ¢ =t + (1 — )y with 0 <t < 1 and ¥, ¥y € A, then
Y1 = 1Pg; i.e., the decomposition is trivial. The set of extreme points of
A is denote ¢(A4).

A Jocal extreme point of aset A C Fisa ¥ € A such that there exists
a 6 > 0 such that ¢ € e({p € A: |l — || < é}).

We will denote the set of local extreme points of A by le(A). Clearly
we have e(A) C le(A), with equality whenever A is convex. But le(A4)
may contain other points besides extreme points; an isolated point is
always a local extreme point, for instance.

We now consider local extreme points of U
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PROPOSITION 2.1. Let f,¢g: D — C be conformal into, with f(D)C
g(D). If Sy € le(U), then S, € le(U).

ProoOF. By assumption f = ¢ 0T where T : D — D is a conformal
automorphism [15,p.39]. Suppose S, ¢ le(U). Then S, = tS,, +(1-1)S,,
with §g,, 5y, € U,8;, #5,,,0 <t <1, [|S;—5, || < éand|S;—5,,]|| <
6. We have

S = Syor = S,(T)T"* + Sy
= [t55,(T) + (1= )5, (T)T" + 57
= S0, (T)T"* + 7] + (1 = D) Se,(T)T" + 57
= thIOT + (1 - t)ngoT.

It is clear that Sy, o7, Sg,0r € U, and Sy, o1 # Sg,c7. Furthermore
1Sger — Sgrorll = |IS(T)T" + Sz — S, (TYT' — Sy
= [[(S4(T) — 8¢, (T)T"?|]
= sup |S,(T()) - So (TCNIT'(2)2(1 = |2]*)?

< sup |Sy(T(2)) — Sy (T(DI(1 ~ |T(2) )

zeD

< sup [Sy(2) — S, (2)(1 — |2|*)?
z€D

= Hsy - 591” <é

by the Schwarz-Pick lemma [1,p.3]. By the similar method we have
||Sg0r — Sgy0or|| < 6. Consequently Sy ¢ le(U). Thus we are finished O

The above theorem is also valid for extreme points of U, of course;
the proof is just a subset of the above proof.

THEOREM 2.2. If S5 € le(U), then f cannot omit a nonempty open
set.

PROOF. Suppose f omits a nonempty open set. Then it will in par-
ticular omit some closed disk D,, say. Let ¢ be a Mdbius transformation
mapping D onto C— D,. Clearly f(D) C ¢g(D), so proposition 2.1 would
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imply that 0 = 5, E le(U), which is false. We can see this by considering
the functions f,(z) = [(1+2) /(1 — z)]? which are univalent for 0O<p<2
Since Sy, (z) = H(l —p*)(1 —z%)72 it follows that 0 ¢ le(U). O

3. The hyperbolic metric

Now we give a brief introduction to the hyperbolic metric. We refer
the reader (8] and [16] for further details. Let = C be a simply con-
nected region. A simply connected region § is czlled hyperbolic if the
complement of Q in C contains at least three points. By the Uniformiza-
tion theorem ([2],p.142],(15.p.9]) there exists a lLolomorphic universal
covering projection g of D onto Q. Since {2 is simply connected, then ¢
is just a conformal function of D onto Q. The collection of all holomor-
phic universal covering projections of ID onto §2 coasists of the functions
goT, where T € Aut(D), the group of conformal automorphisms of D.
The hyperbolic metric on D is defined by

Ap(z)|dz] = (1~ [2]*) 7 "|dz].

The density Ag(w) of the hyperbolic metrie Ag(w)|dw| on a hyperbolic
region {2 is determined by

(3) Aa(g(2)lg'(2)] = Apl(2) = (1 - |=1)7,

where w = ¢(z) is any holomorphic universal covering projection of D
onto 2. The density of the hyperbolic metric is independent of the choice
of the holomorphic universal covering projection ¢ since

IT' ()1 = T()*) ' =(1~z))"", :eD

for any T € Aut(D) [1,p.3]. Using the density g, we can define the
following norm

(4) |hlle = sup [h(w)[Aa(w)™
weN

which is analogous to the norm ||¢|| = [|¥||p from (1).
We shall need the following theorem due to [3].
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THEOREM 3.1 (GEHRING’ THEOREM). If f : @ — C is conformal
into, then ||S¢||q < 12.

In the following, m(A) will always denote the Lebesgue planar mea-
sure of a set A. We shall also need the theorem of [11]

THEOREM 3.2 (NGUYEN’S THEOREM). If T is compact in C, with
m(T") > 0, there exists a nonconstant bounded holomorphic Lipschitz
function on C —T'.

4. Extreme points of the closed convex hull

The smallest closed convex set that contains U7 is called the closed
convex hull of U and it is denoted by coU.

THEOREM 4.1. If Sy € U and Sy € e(coU), then f cannot omit a set
of positive area.

PROOF. Let S; € U, and put @ = f(D),T = C — Q. There is no loss
of generality in assuming that co € Q. We shall suppose that m(T") > 0,
and conclude that Sy ¢ e(colU).

Since I' is compact with m(T') > 0, Nguyen’s theorem gives a non-
constant bounded holomorphic Lipschitz function F on . There is a
point w, € §2 at which F'"(w,) # 0, otherwise F would be a quadratic
polynomial, which is impossible, because F could not then be bounded.
By adding a linear term to F if necessary, we may in addition assume
that F'(w,) = 0. The new F will still be a nonconstant holomorphic
Lipschitz function. For convenience, we write G = F'F'"' — (3/2)F”2.

Let A be the Lipschitz constant of F, and put

Ho(w) = w + re' F(w), with 0 <~ < 1/A.
Then Hy is conformal on 2. We have
(5) SH, = (reieF"'+r262i9G)/(1 +remF')2,

and so Sy, depends holomorphically on re?®. Thus by the mean value
theorem

1 2m
— / Sh, (w)dé = 0.
27 Jy
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Using (2), we get

1 2m

— | ShHyos(2)d8 = Sy(2)

2 Jo

Put :
3
¢j(z) ! / SHeof(Z)dg for ] = 1,2.

_]—TI'
Then clearly S¢ = (1/2)11 + (1/2)ys.
Putting r = 1/(2A4). By calculation, using F'(w,) = 0, we see that

s

) _ .
—1—/ Sy, (w,)dd = (——1)’“—%F'”(wo) for j = 1,2.
. m

j—T

These two integrals are not equal at w, € §, and so we conclude that

Y1 # P2
To conclude that Sy ¢ e(colU ). it remains to show that ;. ¢, € col.
This goes in exactly the same way for ¥y and 15; we will do it for

1 V3
T,Z)l = — / SHoode.
T Jo

Since E is a Banach space and df/w is a Borel probability measure, it
is enough to show that the mapping 8 — Sp, .5 is continuous (13, p.74].
For then

¥ € 55{Syorl6 € [0,7]) C U

since Hg o f is conformal.

We have

1S Ha of — SHyosl| = sup |SH.,,(2) = SH,,, ()I(1 = |2]%)?

zeD
= sup 1S1,(f(2)) = Su, (f(2))a(f(2) 77
= sup |Su, (w) — S, (w)|Aa(w) ™

wEs)

= |Su, — Suslle
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by (1),(2),(3) and (4). Since F satisfies a Lipschitz condition, the in-
equality |F'(w)] < A is valid in 2. Furthermore, we have Sg(w) <
120q(w)? in Q by the theorem of Gehring. Thus

Ire’ F'"(w) + r2e®G(w)| < |1 + re' F'(w)|*12)q(w)?
< 12(1 + Ar)?rg(w)?

in Q. Putting r = 1/(24), § = 0,7, and this yields
|F"(w)] < 54AXg(w)? and G(w) < 108A2)\Q(w)2

by the triangle inequality. See [12] for this. Using (5) and these inequal-
ities, straightforward calculations give

Sk, — Sh,lla < 24732|e* — ).

Thus 6 — Sp,.s is continuous, and the proof of theorem 4.1 is com-
plete. O

REMARKS. The method used in proving theorem 4.1 is a combination
of the method from [12], using Nguyen’s theorem to produce a family of
Schwarzians of univalent functions depending on a parameter, and the
use of integration to produce a convex decomposition. Since theorem
4.1 deals with the closed convex hull, it does not supersede the result in
[12].

Since U is not convex, theorem 4.1 does not necessarily supersede
theorem 2.2 even for extreme points. For there might be some 5S¢ € ¢(U)
with Sy ¢ e(eoU ). What the exact relationship between e(U) and e(eoU )
is seems to be unknown.
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