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ON THE FLUCTUATION IN THE
RANDOM ASSIGNMENT PROBLEM

SUNGCHUL LEE* AND ZHONGGEN Suf

ABSTRACT. Consider the random assignment (or bipartite match-
ing) problem with iid uniform edge costs t(i,7). Let A, be the
optimal assignment cost. Just recently does Aldous [2] give a rig-
orous proof that FA, — ((2). In this paper we establish the upper
and lower bounds for VarA,, i.e., there exist two strictly positive
but finite constants C; and C, such that Cin %/?(logn) %2 <
VarA, < C'gn"l(log n)z.

1. Introduction

Suppose there are n workers available to fill nn jobs, where each worker
is to be assigned to exactly one job. Also suppose that we have a
measurement £(i,5) of how qualified the individual ¢ is for each job
j. An assignment of workers to jobs is then simply a permutation 7
on {1,2,...,n}. For this job assignment m the cost is measured by
> 1 t(é,m(3)). The assignment problem is to find a job assignment 7
that costs less than any other job assignment. For this optimal job
assignment 7 the cost A, is given by

n
A, = min { Zt(i,ﬂ"(i)) : 7’ a permutation on {1,2,... ,n}}

i=1
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We can also think of the workers and jobs as vertices of a bipartite
graph, with the (4, j) as the weights on the edges. Then, the assignment
problem is to find a matching with the minimal total weight in this
bipartite graph.

For the random assignment problem, we let ¢(¢, j) be iid uniform ran-
dom variables on the unit interval [0,1]. It is traditional to use this
uniform distribution. As Aldous [1] and Coppersmith and Sorkin [3]
discussed, the exponential distribution with parameter 1 may be a bet-
ter choice for several reasons. However, as Aldous [1] pointed out, since
the density at 0 ultimately matters, these choices are asymptotically
equivalent. So, in this paper we follow the traditional setting; the uni-
form distribution. Under this uniform setting the asymptotic behavior of
EA,, has received a lot of attention. Using his objective method Aldous
[1] showed that the limit of EA, exists and it is the cost of an opti-
mal bipartite matching on certain weighted infinite tree. Just recently
does Aldous [2] identify the limit as {(2) by constructing the optimal
bipartite matching on the infinite tree. See [12], [6], [3] for various re-
sults regarding the upper bounds of EA, and [8], [5], [9] for the lower
bounds.

It is natural to expect that VarA, =~ o2/n for some 0 < 0 < 00,
and that the rescaled A, has a normal limit; this is supported by the
Monte-Carlo simulation. However there is no mathematical proof and
this problem is largely open. Toward this problem, in this paper we
establish the upper and lower bounds for the variance of A,. Our main
result is as follows.

THEOREM 1. There exist strictly positive but finite constants Cy and
Co such that

Cin~%*(logn)™3/2 < VarA, < Con™ (logn)?.

In Frieze and Sorkin [4], they studied the relationship between the
assignment problems and the asymmetric traveling salesman problems.
One can use their result and the argument in this paper to obtain the
upper and lower bounds for the variance of the asymmetric traveling
salesman problems. We leave this to the interested reader.

The proof of the Theorem will be given in Section 2. The upper
bound is a slight improvement to the known upper bound due to Tala-
grand [11] (see also Section 6.7 of Steele [10]). More specifically, Karp
and Steele [7] showed that with high probability the greatest cost of
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an edge used in the optimal assignment is of order (logn)?/n. With
this Talagrand [11] obtained a good concentration inequality for A, and
showed that Vard, < Czn~!(logn)?. The present upper bound is an
immediate consequence of the recent result of Frieze and Sorkin [4]; they
showed that with high probability the greatest cost of an edge used in
the optimal assignment is of order logn/n. We sketch in Section 2 how
to get the upper bound. Our main contribution is actually the lower
bound. There was no lower bound available up to this point. In this
paper we use the conditioning argument to establish the lower bound in
Theorem 1.

In this paper, there are lots of strictly positive but finite constants
whose specific values are not of interest. We denote them by C;.

2. Proof of Theorem 1

Let’s begin with the proof of the upper bound which is an immediate
consequence of the recent result of Frieze and Sorkin [4] that with high
probability the greatest cost of an edge used in the optimal assignment
is of order log n/n. With this we obtain a good concentration inequality
for A, and show that VarA4, < Can~!(logn)?. We sketch this part.

The main idea of Frieze and Sorkin [4] is that if there are two se-
quences 41,42, - . . , iy and i}, 5, ..., 4, in {1, 2,...,n} such that (ij,ig_l),
2 < 7 <m, and (i1,17,,) are in an optimal assignment, then

m m
(2.1) S "t 10) i i) < D (i, 15)-

Jj=2 j=1
Otherwise, it is better to use (ij,i;), 1 < j <m, than (z'j,i;-_l), 2<ji<
m, and (i1,1,,) in an optimal assignment. They showed that with high
probability for an optimal assignment 7 and for any 7 in {1,2,...,n}
there are two sequences i1,42,...,%y and 4,4, ..., 4, in {1,2,...,n}
such that (45, 2'3»_1), 2 < j <m,and (i1, ,,) are in an optimal assignment
7 and that 4; = ¢ and iz, = 7(i). By (2.1), then we have

m

(2.2) t(i,m(i) < Y (i, 15) = Y t(ig,151)-
Jj=1

j=2
By their ingenious choice of two sequences the RHS of (2.2) is quite
small with high probability.

Here is a sketch of their choice. Consider the bipartite graph K, , on
vertex sets [ = J = {1,2,...,n}, in which each edge is assigned a cost
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t(%,7). Define for I’ C I, the top-down short edges TD(I'} from I’ by

TD(I') ={(i,5) : i € I' such that (i,j) is one of the 40
shortest arcs out of i}

and for J' C J, the down-top short edges DT(J') from J' by
DT(J) = {(i,7) : 3j € J' such that (,]) is one of the 40

shortest arcs into j}.

With these top-down short edges and down-top short edges we now
define for I’ C I, the neighborhood of I’ by

(IY={j: (i,§) e TDI')}
and for J’ C J, the neighborhood of J’ by
N(J') = {i: (i,j) € DT(J)}.

Then, they showed that for small I’ and J’ their neighborhoods are
relatively large; with high probability for all I’ ¢ I with |I'| < n/5
and J' C J with |T| < n/5, we have |[N(I')| > 4|I'| and |N(J')| > 4]J|.
Under this good situation we use the following pigeon hole principle. We
let Iy = {i} and we construct I by Iy = 7~} N(Ix-1)) until |Ix,_1| >
n/5. We discard vertices from Iy,_; to create a smaller set I ,’Co_l with
[I,—1| = [n/5] and we let I} = n~}(N(I;,_,)). By its construction we
have |I; | > n/2. We do the same operation for 7(i). Let Jo = {m(i)}
and we construct Ji by Jr = w(N(Jg—1)) until |Jg,—1] > n/5. We
discard vertices from Ji, 1 to create a smaller set J; _; with |J; | =
[n/5] and we let J; = w(N(Jy,_;)). By its construction we have |J; | >
n/2. Since both |I} | and |J}, | are larger than n/2, there must be some
i € Iy with m(i') € J; . Hence there are two sequences considered in
(2.1). Moreover, the first few edges (i;,7}) in the RHS of (2.1) is the top-
down short edges and the rest is the down-top short edges. In addition,
m is of order logn.

In Lemma 7 of Frieze and Sorkin [4], they showed that with high
probability

k k-1
Zl=max{z i1, 1) ZtZHla]l }
=0

=0

is of order logn/n where the maximum is over any sequences g, jo, 1,
J1, -+, ik, jr with top-down short edges (i, ji) € TD({i;}) leaving from
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i; and k < [3log, n], and similarly

k k-1
ZQZII]&X{Z i, J1) Ztllﬂdl }
1=0

1=0

is of order logn/n where the maximuin is over any sequences ig, Jjo, i1,
Jis + v+ ik, Jr with down-top short edges (i;,5;) € DT({j}) leaving from
Ji and k < [3logyn]. With these Z; and Z2, we can easily see that
the RHS of (2.2) is bounded by Z; + Z5. Hence, by (2.2) with high
probability ¢(i, 7 (7)) is of order logn/n.

We can quantify the meaning of “with high probability” and “of order
logn/n”, and the following is the precise statement we need. We skip
its proof.

PROPOSITION 1. Let Tnq, be the maximum cost of an edge used in
an optimal assignment. Then,

logn

P(Tmaz > Cy ) < C‘57'7«~3

As a direct consequence of Proposition 1, we can obtain the following
concentration inequality for A, around its median. Since one can prove
it in a similar way to Talagrand [11], we skip its proof.

PROPOSITION 2. Let m(A,) be the median of A,,. Then
42

P(l4n ~m(4n)] 2 8) < Cooxp (-~ Crige

)+an

PROOF OF THE UPPER BOUND. By Proposition 2, we have

E(Ay — m(Ay))? = z/on sP(| Ay — m(An)| > 5)ds

n 2
< ¢
< 2/0 s(c(, exp(~Crio s gn) 5) + Can™ )ds
2
<G (log n) '
n
Since Var4, < E(A, — m(A,))?, the upper bound follows. O

To establish the lower bound for VarA,,, we use the conditioning ar-
gument. We first recall a basic fact on the conditional variance.
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LEMMA 1. Let X be in L2(Q, F, P). Then, for any sub-field F'
Var(X) > E Var(X|F")

where Var(X|F') = E(X?|F') — (E(X|F"))?. In particular, if Ey, Es,
, By are mutually disjoint, then

m

Var(X Z Var(X|Ey)P(Ey).

PROOF OF THE LOWER BOUND. For 1 < i < n we let (1% be a one to
one mapping from {2,...,n} to {1,2,...,n}\{i}, and we denote by A(1 Z)
the optimal cost of workers {2,...,n} 3551gned to jobs {1,2,... ,n}\{z}
i.e.,

T

1,3 . i
ALY = min Y (5,70 (5)).
T ] =2

Then, we can rewrite A, as

An = min (¢(1,1) + AS)).

1<i<n

It is simple but important to note that t(l,i), 1 < ¢ < n, are iid,

{t(1,7),1 <4 < n} is independent of {A;1 Zl, 1 <4< n}, and Agﬁ has

the same distribution as A,,_1.

Given ASLI 11),A511 21), . AS nl), we rearrange them in the increasing
order. In other words, we find a permutation ¢ on {1,2,...,n} such

that AW < ALe@) << A Now, we let T, = AW,
Then,

_ . . (1,8)y _ . ) ]
A, = 1ISni1§1n(t(1,z) +A4,77) = lgiilgn(Xz + 1)
where X; = ¢(1,0(¢)) are iid uniform on [0,1] and independent of Tj.

Therefore, from now on instead of looking at VarA, we look at
Var1r<n‘i£1 (Xi +T;). For 1 < m < n we define m mutually disjoint
1N
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events as follows.

1 1 1
Elz{X1S_3X22—1' ,an—},

n n n

1 1 1 1
B={X <=, X12 +T-T1,Xs 2 ~,....Xn 2~ },

n n n n

1 1 1
Xm—-lZ"‘;’Tm* m~1aXm+1Z""a---’Xn2—}'
n n n

Then, E1, Es, ..., Ey,, are mutually disjoint, and

P(E) = 2(1- ),
1, 1., 1
P(E;) = ;(1 - _ﬁ) E(1 -~ o (T — T1)),
m—1
PEn) =+ (1~ )" "E [ (1= 2 ~ (T~ T0).

Most importantly, on E; we have

(2.4)

An = min (Xi +Tp) = X + T

Thus, by Lemma 1 and (2.4)

Var4, = Var(lrgniléln(Xi + T3))

> ;Var(@gn(xi +T;)|E) P(Ex)

= Y Var(Xy + Tx| Ey) P(Ey).
k=1
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Thus, since X; and T} are independent, by (2.3)

3

Vardy, > Y Var(Xy + Tk|Ex) P(Ex)

k=1
> > Var(Xi|Ex)P(Ex)
k=1
(2.5) = ) Var(Xi|X; < %)P(Ek)
k=1
= %Z P(Ey)
k=1
1 m n e k-1 1
- 12n2ﬁz n EHl——ﬁ—(Tk_Tl))

=1

Next, we choose m and estimate the RHS of (2.5). Define
G = N {1472 — (AL < sna}

where m(A(1 z)) is the median of A( % and where s,, is specified below

On G, since m(A,(ll_q) = (A(nlfl) ), we have |An1_? (1’3 I < 28p-1
Since T; are just the renumbering of Aﬁllfl), on Gy
(26) |Tz - TJI < 28,-1.

Therefore, by (2.5) and (2.6)

v, > Lot S0 bt lo- Lo o)
"= 19n2p - n o n
> L1y Lyt T - 2 T — T)1(G
= 12n252(1—ﬁ) EH(l'g—( k — T1))1(Gr)
(2.7) ] 1
1 1 & Linek 1 o1
> — = _ = _1
2 gy 20 ) T 2enn) PG
m 1 1
2 (1= =)*(1 = — = 283-1)" P(Gn).

12n3 n
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Since Agllf) has the same distribution as A,_1, by Proposition 2

P(ASY — m(AS)] > sn1)
= P(‘An—l —m(An_1)} > sp-1)
(n—1)s?

n_l ) + Cg(n —1)73.

< oo (= g1y

Now, we take s, = C’lon“l/2(logn)3/2. Then, we have P(Gp) — 1.
After the choice of s,, we take m = [1/2s,-1]. With this choice of m,
(1-1/n)" — e~ !, (1—1/n—2s,_1)™ — e, and hence the lower bound
follows from (2.7). O

(1]
2l
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[11]
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