• Title/Summary/Keyword: mathematical problem solving process

Search Result 343, Processing Time 0.022 seconds

A Study on the Pattern of usage of Problem Solving Strategy according to Its Presentation (협력 학습을 통한 문제 해결에서 해결 전략의 사용형태에 관한 대화 분석)

  • 정민수;신현성
    • Journal of the Korean School Mathematics Society
    • /
    • v.4 no.2
    • /
    • pp.135-142
    • /
    • 2001
  • The selected questions for this study was their conversation in problem solving way of working together. To achieve its purpose researcher I chose more detail questions for this study as follows. $\circled1$ What is the difference of strategy according to its level \ulcorner $\circled2$ What is the mathematical ability difference in problem solving process concerning its level \ulcorner This is the result of the study $\circled1$ Difference in the strategy of each class of students. High class-high class students found rules with trial and error strategy, simplified them and restated them in uncertain framed problems, and write a formula with recalling their theorem and definition and solved them. High class-middle class students' knowledge and understanding of the problem, yet middle class students tended to rely on high class students' problem solving ability, using trial and error strategy. However, middle class-middle class students had difficulties in finding rules to solve the problem and relied upon guessing the answers through illogical way instead of using the strategy of writing a formula. $\circled2$ Mathematical ability difference in problem solving process of each class. There was not much difference between high class-high class and high class-middle class, but with middle class-middle class was very distinctive. High class-high class students were quick in understanding and they chose the right strategy to solve the problem High class-middle class students tried to solve the problem based upon the high class students' ideas and were better than middle class-middle class students in calculating ability to solve the problem. High class-high class students took the process of resection to make the answer, but high class-middle class students relied on high class students' guessing to reconsider other ways of problem-solving. Middle class-middle class students made variables, without knowing how to use them, and solved the problem illogically. Also the accuracy was relatively low and they had difficulties in understanding the definition.

  • PDF

Metacognitive Learning Methods to Improve Mathematical Thinking (메타인지 전략 학습을 통한 수학적 사고력 신장 방안 연구)

  • Park, Hey-Yeun;Jung, Soon-Mo;Kim, Yunghwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.4
    • /
    • pp.717-746
    • /
    • 2014
  • The study aimed to explore how to improve mathematical thinking through metacognitive learning by stressing metacognitive abilities as a core strategy to increase mathematical creativity and problem-solving abilities. Theoretical exploration was followed by an analysis of correlations between metacognitive abilities and various ways of mathematical thinking. Various metacognitive teaching and learning methods used by many teachers at school were integrated for sharing. Also, the methods of learning application and assessment of metacognitive thinking were explored. The results are as follows: First, metacognitive abilities were positively related to 'reasoning, communication, creative problem solving and commitment' with direct and indirect effects on mathematical thinking. Second, various megacognitive ability-applied teaching and learning methods had positive impacts on definitive areas such as 'anxiety over Mathematics, self-efficacy, learning habit, interest, confidence and trust' as well as cognitive areas such as 'learning performance, reasoning, problem solving, metacognitive ability, communication and expression', which is a result applicable to top, middle and low-performance students at primary and secondary education facilities. Third, 'metacognitive activities, metaproblem-solving process, personal strength and weakness management project, metacognitive notes, observation tables and metacognitive checklists' for metacognitive learning were suggested as alternatives to performance assessment covering problem-solving and thinking processes. Various metacognitive learning methods helped to improve creative and systemic problem solving and increase mathematical thinking. They did not only imitate uniform problem-solving methods suggested by a teacher but also induced direct experiences of mathematical thinking as well as adjustment and control of the thinking process. The study will help teachers recognize the importance of metacognition, devise and apply teaching or learning models for their teaching environments, improving students' metacognitive ability as well as mathematical and creative thinking.

  • PDF

Analysis of problem solving competency and types of tasks in elementary mathematics textbooks: Challenging/Thinking and inquiry mathematics in the domain of number and operation (초등 수학교과서의 문제해결 역량 및 과제 유형 분석: 수와 연산 영역의 도전/생각 수학과 탐구 수학을 중심으로)

  • Yeo, Sheunghyun;Suh, Heejoo;Han, Sunyoung;Kim, Jinho
    • The Mathematical Education
    • /
    • v.60 no.4
    • /
    • pp.431-449
    • /
    • 2021
  • Elementary mathematics textbooks present contents for enhancing problem solving competency. Still, teachers find teaching problem solving to be challenging. To understand the supports textbooks are suggesting, this study examined tasks from the challenging/thinking and inquiry mathematics. We analyzed 288 mathematical activities based on an analytic framework from the 2015 revised mathematics curriculum. Then, we employed latent class analysis to classify 83 mathematical tasks as a new approach to categorize tasks. As a result, execution of the problem solving process was emphasized across grade levels but understanding of problems was varied by grade levels. In addition, higher grade levels had more opportunities to be engaged in collaborative problem solving and problem posing. We identified three task profiles: 'execution focus', 'collaborative-solution focus', 'multifaceted-solution focus'. In Grade 3, about 80% of tasks were categorized as the execution profile. The multifaceted-solution was about 40% in the thinking/challenging mathematics and the execution profile was about 70% in Inquiry mathematics. The implications for developing mathematics textbooks and designing mathematical tasks are discussed.

A Study of Students' Mathematical Context Information Accompanied Problem -Solving Activities (수학적 맥락 정보를 이용한 수업 환경에서의 학습자의 문제 해결 활동)

  • Bae Min Jeong;Paik Suk-Yoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.7 no.1
    • /
    • pp.23-44
    • /
    • 2003
  • The purpose of the study is to examine the phenomenon presented the process of problem solving activities of students with the mathematical context information accompanied problem based on Freudenthal's mathematizing theory and Realistic Mathematics Educations about cognitive and emotional aspects. In conclusion, taking a look at the results of study, open-ended contextual problem was had to offer in order to pull out various solutions. Teachers should help students develop their own methods, discuss their methods with others' and reinvent formal mathematics and its constructive process under the guidance of the teachers.

  • PDF

A statistical study of mathematical thinkings and problem-solving abilities for logical-type problems with reference to secondary talented students (중등영재학생들의 수학적 사고 선호도와 논리형 문제의 해결능력에 관한 통계적 검증 연구)

  • Pak, Hong-Kyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.198-204
    • /
    • 2009
  • It is one of important and interesting topics in mathematics education to study the process of the logical thinking and the intuitive thinking in mathematical problem-solving abilities from the viewpoint of mathematical thinking. The main purpose of the present paper is to investigate on this problem with reference to secondary talented students (students aged 16~17 years). In particular, we focus on the relationship between the preference of mathematical thinking and their problem-solving abilities for logical-type problems by applying logistic regression analysis.

A Study of Understanding Mathematical Modelling (수학적 모델링의 이해 - 국내 연구 결과 분석을 중심으로 -)

  • Hwang, Hye-Jeang
    • School Mathematics
    • /
    • v.9 no.1
    • /
    • pp.65-97
    • /
    • 2007
  • Problem solving and mathematical applications have been increasingly emphasized in school mathematics over the past ten years. Recently it is recommended that mathematical applications and modeling situations be incorporated into the secondary school curriculum. Many researches on this approach have been conducted in Korea. But unfortunately two thirds of these researches have been studied by graduate students. Therefore, more professional researchers should be concerned with the study related to mathematical modelling activity. This study is planning to investigate and establish i) the concepts and meanings of mathematical model, mathematical modelling, and mathematical modelling process, ii) the properties of problem situations introduced and dealt with in mathematical modelling activity, and iii) relationship between mathematical modelling activity and problem solving activity, and so on. To accomplish this, this study is based on the analysis and comparison of 11 articles published in domestic journals and 22 domestic master papers.

  • PDF

The structure of teacher discourse in the process of solving mathematic problems (수학 문제 해결 과정에서의 교사 담론 구조)

  • Choi, Sang-Ho
    • The Mathematical Education
    • /
    • v.61 no.2
    • /
    • pp.273-286
    • /
    • 2022
  • The purpose of this study is to analyze the teacher's discourse structure in the process of solving mathematics problems based on the communication between teachers and students. To achieve this goal, we observed a semester class by a teacher with experience who practiced a teaching method that creates mathematical meanings based on students' participation in class. In order to solve problems based on the participation of students in each class, the similarities between the processes of creating the structure of the discourse were analyzed. As a result of the analysis, the teacher was able to focus on the goal in the process of starting a discourse, and in the process of developing the discourse, the problem was solved by focusing on understanding the problem. In the process of arranging the discourse, the problem-solving process and the core of the result is summarized. Based on the possibility of generalization of the teacher discourse structure, it will be able to provide practical help in the process of implementing a teaching method that solves mathematics problems by communicating with students in the future.

Mathematical Thinking and Developing Mathematical Structure

  • Cheng, Chun Chor Litwin
    • Research in Mathematical Education
    • /
    • v.14 no.1
    • /
    • pp.33-50
    • /
    • 2010
  • The mathematical thinking which transforms important mathematical content and developed into mathematical structure is a vital process in building up mathematical ability as mathematical knowledge based on structure. Such process based on students' recognition of mathematical concept. Developing mathematical thinking into mathematical structure happens when different cognitive units are connected and compressed to form schema of solution, which could happen through some guided problems. The effort of arithmetic approach in problem solving did not necessarily provide students the structure schema of solution. The using of equation to solve the problem is based on the schema of building equation, and is not necessary recognizing the structure of the solution, as the recognition of structure may be lost in the process of simplification of algebraic expressions, leaving only the final numeric answer of the problem.

Development of Instructional Models for Problem Solving in Quadratic Functions and Ellipses (이차함수와 타원의 문제해결 지도를 위한 멀티미디어 학습자료 개발)

  • 김인수;고상숙;박승재;김영진
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.1
    • /
    • pp.59-71
    • /
    • 1998
  • Recently, most classrooms in Korea are fully equipped with multimedia environments such as a powerful pentium pc, a 43″large sized TV, and so on through the third renovation of classroom environments. However, there is not much software teachers can use directly in their teaching. Even with existing software such as GSP, and Mathematica, it turns out that it doesn####t fit well in a large number of students in classrooms and with all written in English. The study is to analyze the characteristics of problem-solving process and to develop a computer program which integrates the instruction of problem solving into a regular math program in areas of quadratic functions and ellipses. Problem Solving in this study included two sessions: 1) Learning of basic facts, concepts, and principles; 2) problem solving with problem contexts. In the former, the program was constructed based on the definitions of concepts so that students can explore, conjecture, and discover such mathematical ideas as basic facts, concepts, and principles. In the latter, the Polya#s 4 phases of problem-solving process contributed to designing of the program. In understanding of a problem, the program enhanced students#### understanding with multiple, dynamic representations of the problem using visualization. The strategies used in making a plan were collecting data, using pictures, inductive, and deductive reasoning, and creative reasoning to develop abstract thinking. In carrying out the plan, students can solve the problem according to their strategies they planned in the previous phase. In looking back, the program is very useful to provide students an opportunity to reflect problem-solving process, generalize their solution and create a new in-depth problem. This program was well matched with the dynamic and oscillation Polya#s problem-solving process. Moreover, students can facilitate their motivation to solve a problem with dynamic, multiple representations of the problem and become a powerful problem solve with confidence within an interactive computer environment. As a follow-up study, it is recommended to research the effect of the program in classrooms.

  • PDF

A Study on Student's Processes of Problem Solving Using Open-ended Geometric Problems in the Middle School (중학교 기하단원의 개방형문제에서 학생의 문제해결과정의 사고 특성에 관한 연구)

  • ChoiKoh, Sang-Sook;Noh, Ji-Yeon
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.3
    • /
    • pp.303-322
    • /
    • 2007
  • This study is to investigate student's processes of problem solving using open-ended Geometric problems to understand student's thinking and behavior. One 8th grader participated in performing her learning in 5 lessons for June in 2006. The result of the study was documented according to Polya's four problem solving stages as follows: First, the student tended to neglect the stage of "understanding" a problem in the beginning. However, the student was observed to make it simplify and relate to what she had teamed previously Second, "devising a plan" was not simply done. She attempted to solve the open-ended problems with more various ways and became to have the metacognitive knowledge, leading her to think back and correct her errors of solving a problem. Third, in process of "carrying out" the plan she controled her solving a problem to become a better solver based on failure of solving a problem. Fourth, she recognized the necessity of "looking back" stage through the open ended problems which led her to apply and generalize mathematical problems to the real life. In conclusion, it was found that the student enjoyed her solving with enthusiasm, building mathematical belief systems with challenging spirit and developing mathematical power.

  • PDF