• Title/Summary/Keyword: mathematical problem solving

Search Result 1,019, Processing Time 0.026 seconds

A Study on the Elements of Character in the Elementary Mathematics Textbooks Based on the 2009 Revised Curriculum -Focused on the 3rd and 4th Grades- (2009 개정 수학 교과용 도서의 인성 요소 분석 -3, 4학년을 중심으로-)

  • Park, Yongjun;Park, Mangoo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.4
    • /
    • pp.545-561
    • /
    • 2015
  • The purpose of this study was to analysis how the elements of character are reflected in the 3rd and 4th grade elementary mathematics textbooks based on the 2009 revised curriculum. This study focused on the elements of character in the 3rd and 4th grade mathematics textbooks. The researchers analyzed the elements of character in the students' mathematics textbooks and teacher's guide books. In particular, they analyzed how those elements of character are reflected in those books. Findings of this study are as follows. First of all, the elements of character were founded in the most of units on the 3rd and 4th grade mathematics textbooks, but they were biased to the specific elements of character. Second, the resources using related with character vary in the textbooks. As methods of character education, connections of elements of character with mathematical concepts, broader view of the world, or problem solving are appeared. From the results of the research, we suggest the followings. We need to set the teacher's roles in character education. Mathematics textbooks should include various elements of character for effective character education. In addition to development of quality materials for character education in mathematics education, teacher education programs should include character education in mathematics education.

Characteristics of Algebraic Thinking and its Errors by Mathematically Gifted Students (수학영재의 대수적 사고의 특징과 오류 유형)

  • Kim, Kyung Eun;Seo, Hae Ae;Kim, Dong Hwa
    • Journal of Gifted/Talented Education
    • /
    • v.26 no.1
    • /
    • pp.211-230
    • /
    • 2016
  • The study aimed to investigate the characteristics of algebraic thinking of the mathematically gifted students and search for how to teach algebraic thinking. Research subjects in this study included 93 students who applied for a science gifted education center affiliated with a university in 2015 and previously experienced gifted education. Students' responses on an algebraic item of a creative thinking test in mathematics, which was given as screening process for admission were collected as data. A framework of algebraic thinking factors were extracted from literature review and utilized for data analysis. It was found that students showed difficulty in quantitative reasoning between two quantities and tendency to find solutions regarding equations as problem solving tools. In this process, students tended to concentrate variables on unknown place holders and to had difficulty understanding various meanings of variables. Some of students generated errors about algebraic concepts. In conclusions, it is recommended that functional thinking including such as generalizing and reasoning the relation among changing quantities is extended, procedural as well as structural aspects of algebraic expressions are emphasized, various situations to learn variables are given, and activities constructing variables on their own are strengthened for improving gifted students' learning and teaching algebra.

Analysis on the New Zealand Mathematics Curriculum: Focused on the Connectivity between Standards into Curriculum (뉴질랜드 수학과 교육과정 분석 - 교육과정 성취기준의 연계성을 중심으로 -)

  • Cho, Seongmin;Park, Ji Hyun;Choi, Inseon
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.423-441
    • /
    • 2017
  • New Zealand had reformed their national curriculum with competence and are applying the revised curriculum. As the 2015 revised national curriculum is clothed with competency-based curriculum, New Zealand may have important implications for the study of the Korean revised curriculum. In this study, we examine characteristics of the education system and the national curriculum in New Zealand. In addition, we analyze the standards into the New Zealand national curriculum in terms of 'curriculum connectivity' that is one of important curriculum criteria for improving the quality of education. For this, we look an overview of the relation between the New Zealand curriculum and NCEA, which is the core of the student-centered education system in New Zealand, and analyze the correspondence between the New Zealand curriculum and the Korean curriculum. And we establish analysis framework of curriculum connectivity based on these comparison analysis contents, and analyze Korean mathematics standards with corresponding levels from among the New Zealand mathematics curriculum. According to the results of this study, the New Zealand curriculum includes the most of standards which Korean high school students who want to enter university of natural sciences of engineering need to require. In addition, the New Zealand curriculum highlights statistical research activities for developing problem-solving ability in real life. From perspective of curriculum connectivity, 'in-depth contents' adding on to repeating mathematical concepts or contents are included in the New Zealand curriculum.

A Study on Development of Teaching & Learning Materials related to Coding for Convergence Education Integrating Mathematics and Information (수학·정보 융합교육을 위한 코딩과 연계한 교수학습 자료 개발 연구)

  • Shin, Gicheol;Suh, Boeuk
    • Journal of Science Education
    • /
    • v.43 no.1
    • /
    • pp.17-42
    • /
    • 2019
  • This study, as an attempt to integrate mathematics and information for convergence education, was conducted to develop teaching-learning materials on mathematics education combined with coding education, which has recently been emphasized. We chose the subject of digital signature for coding education, and used SageMath as a coding program. In this study, we overview mathematics used in the elliptic curve digital signature algorithm, one of the many methods for digital signature, and developed the teaching-learning materials on the algorithm for mathematics education integrated with information education based on coding. The elliptic curve digital signature algorithm utilized in transactions of Bitcoin, which many people recently are interested in, is a good example, showing students that mathematics is applied to problem-solving in the real world and provides an optimal environment for implementation by coding. Accordingly, we expect that a class on algorithm will provide a specific teaching-learning program to achieve the goal of integrated mathematics education. By comprehensively considering the opinions of mathematicians, mathematics teachers and mathematics education experts, we expect that the teaching-learning program will be realized as a meaningful class in science high schools, high school's math clubs, and 'number theory' class in colleges.

A Case Study of Service Education Activities Applying Mathematics into a Place-Based Earth Science Program: Measuring the Earth's Size (수학과 연계한 장소기반 지구과학 프로그램에 대한 교육봉사활동 사례 연구: 지구의 크기 측정)

  • Yu, Eun-Jeong;Kim, Kyung Hwa
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.518-537
    • /
    • 2019
  • This study examined the implications of a place-based earth science program integrated with Mathematics. 11 pre-service earth science teachers and 22 middle school students participated in the service education activities of earth science for 30 hours focusing on the measurement of the earth's size through earth science experiments as part of the middle school curriculum. In order to minimize errors that may occur during the earth's size measurement experiments using Eratosthenes's shadows length method of the ancient Greek era, the actual data were collected after triangulation ratios were conducted in the locations of two middle schools: one in remote metropolitan and the other in rural area. The two schools' students shared the final estimate result. Through this process, they learned the mathematical method to express the actual data effectively. Participants, experienced the importance and difficulty of the repetitive and accurate data acquisition process, and also discussed the causes of errors included in the final results. It implies that a Place-Based Earth Science Program activity can contribute to students' increased-understanding of the characteristics of earth science inquiry and to developing their problem solving skills, thinking ability, and communication skills as well, which are commonly emphasized in science and mathematics in the 2015 reunion curriculum. It is expected that a place-based science program can provide a foundation for developing an integrated curriculum of mathematics and science.

A Case Study on Characteristics of the Mathematics Gifted Children (수학영재의 특성에 관한 사례연구)

  • Kim, Min-Jung;Ryu, Sung-Rim
    • Education of Primary School Mathematics
    • /
    • v.10 no.1 s.19
    • /
    • pp.41-56
    • /
    • 2007
  • Related with the mathematics gifted children the situation of different case studies is the research which is limited in mathematics problem solving process of the most mathematics gifted children. The research which it sees hereupon observes from the scope which is wider the quality of the mathematics gifted children, before the hazard mathematics gifted children whom it sees enter into the mathematics gifted children education center unit life and life after studying living and dismissal of a class from the general school, namely for their general life it leads compared to attitude it observes the reporter it does a quality. For a what kind of interest in the mathematics gifted children, the research leads the family or general class, from the gifted children education center it has it considers encouragement, map and to give a help to good mathematics gifted children education activation, it does. It will reach and to respect with afterwards it set a same three research problem. First, before entering into the mathematics gifted children education center, are the mathematics gifted children what kind of quality? Second, Are the mathematics gifted children what kind of quality for general school hour? Third, Are the mathematics gifted children what kind of quality after dismissal of a class after hour? Being selected in the hazard gifted children education center which solves an up research problem, simple characteristic and approach ease characteristic, by the condition of the permission possibility back it selected 2 person gifted children school boxes which are coming and going. And, before entering into these mathematics gifted children education center, studying life from the general school, life after dismissal of a class it will extend at 1 years, various recording it will ask and it collected direct observation and interview it led against their quality it analyzed. It shared the result which it analyzes with emotional quality, studying conduct qualities, general qualities of the mathematics gifted children and qualities of mathematics gifted children parents. Studies level of the mathematics gifted children parents high facility when them are young from, the interest and helping out which it has were considerable, to advance with the direction where in order for always with great disaster them are proper the map it did. In general quality of the mathematics gifted children from young age the ability which finds a language and a possibility concept superiorly the ability which expresses the thought of oneself logically was superior, the competitive spirit was high, it liked it came reading, a leader role, to reveal a deepening school with the fact that it comes and goes. Also it will burn with their studying conduct quality and it will roll and it did deeply and it arranged knot eagerly, accomplishing which is superior from the field which is various it showed, the originality was superior, the subject attachment power was high quite, oneself it studies it has a devotion the possibility of knowing it was. And, the social characteristic of the friends and is good with their emotional quality and it does there is own reflection and an encouragement at any time and also a confidence, but just as good as the stress also it receives the possibility of knowing it was to him.

  • PDF

Effects of Out-of-school STEAM Programs Based on Social-Emotional Learning (사회정서학습 기반의 학교 밖 STEAM 프로그램의 효과)

  • Lee, Hyunjoo;Lee, Soo-Yong;Jung, Jaeeun;Lee, Saebyoul;Choi, Eunhye;Kwak, E-Rang;Kim, Younghwa;Chang, Hyewon
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.740-753
    • /
    • 2022
  • This study was conducted to develop and apply an out-of-school STEAM program model based on Social-Emotional Learning (SEL) for underprivileged students in the lower grades. To this end, a STEAM program based on SEL was developed, with the following characteristics. First, by integrating traditional STEAM learning elements and SEL elements, a structured program was designed with consistent stages, including mindfulness meditation→present an authentic situation→creative design→emotional experiences→reflection. Second, the program was structured so that elementary school students could develop mathematical thinking and scientific inquiry skills in problem-solving situations in daily life. Third, the detailed themes for each STEAM program involved storytelling-based problem situations, as well as activities centered on play and sympathy to reflect the educational needs of underprivileged students. From these characteristics, a total of five programs were developed and applied to 16 teachers and 354 lower-grade elementary school students in 16 community children centers nationwide. The results were as follows. First, while students' satisfaction with the STEAM program was 4.16, there were no significant differences in STEAM satisfaction according to gender. Second, while all students' interest and self-efficacy, which was one of sub factors of STEAM attitude, were significantly improved, no significant difference was seen in STEAM attitudes according to gender. Third, although students' SEL competencies were not significantly improved, relationship skills, which were among the sub factors of SEL competencies, were significantly improved, and there were no significant differences in SEL competencies according to gender. From these results, a discussion on the effect of the out-of-school STEAM program for underprivileged students and directions for follow-up studies was suggested.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.

Features of sample concepts in the probability and statistics chapters of Korean mathematics textbooks of grades 1-12 (초.중.고등학교 확률과 통계 단원에 나타난 표본개념에 대한 분석)

  • Lee, Young-Ha;Shin, Sou-Yeong
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.4
    • /
    • pp.327-344
    • /
    • 2011
  • This study is the first step for us toward improving high school students' capability of statistical inferences, such as obtaining and interpreting the confidence interval on the population mean that is currently learned in high school. We suggest 5 underlying concepts of 'discretion of contingency and inevitability', 'discretion of induction and deduction', 'likelihood principle', 'variability of a statistic' and 'statistical model', those are necessary to appreciate statistical inferences as a reliable arguing tools in spite of its occasional erroneous conclusions. We assume those 5 concepts above are to be gradually developing in their school periods and Korean mathematics textbooks of grades 1-12 were analyzed. Followings were found. For the right choice of solving methodology of the given problem, no elementary textbook but a few high school textbooks describe its difference between the contingent circumstance and the inevitable one. Formal definitions of population and sample are not introduced until high school grades, so that the developments of critical thoughts on the reliability of inductive reasoning could not be observed. On the contrary of it, strong emphasis lies on the calculation stuff of the sample data without any inference on the population prospective based upon the sample. Instead of the representative properties of a random sample, more emphasis lies on how to get a random sample. As a result of it, the fact that 'the random variability of the value of a statistic which is calculated from the sample ought to be inherited from the randomness of the sample' could neither be noticed nor be explained as well. No comparative descriptions on the statistical inferences against the mathematical(deductive) reasoning were found. Few explanations on the likelihood principle and its probabilistic applications in accordance with students' cognitive developmental growth were found. It was hard to find the explanation of a random variability of statistics and on the existence of its sampling distribution. It is worthwhile to explain it because, nevertheless obtaining the sampling distribution of a particular statistic, like a sample mean, is a very difficult job, mere noticing its existence may cause a drastic change of understanding in a statistical inference.

  • PDF