• Title/Summary/Keyword: mathematical competency

Search Result 90, Processing Time 0.021 seconds

An analysis of characteristics on elementary teachers' noticing in fraction division lessons (분수의 나눗셈 수업에 대한 초등교사의 노티싱 특징 분석)

  • Sunwoo, Jin
    • Education of Primary School Mathematics
    • /
    • v.27 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Teachers' ability to notice is a crucial indicator of their instructional expertise. Despite the significance of this ability, research in mathematics teacher education has predominantly focused on the noticing of preservice teachers, with limited exploration into the noticing abilities of experienced in-service teachers. This study addresses this gap by examining the noticing characteristics of in-service elementary teachers actively developing their competency in elementary mathematics education. For this purpose, 23 elementary school teachers were asked to complete an analysis sheet while viewing the mathematics lesson video depicting on the concept of (fraction)÷(natural number), allowing us to scrutinize their attending, interpreting, and responding skills in detail. The study's results revealed that teachers demonstrated a tendency to attend mathematically significant aspects related to the teaching of fraction division. They interpreted the observed phenomena through the lens of fraction division's instructional principles, proposing specific pedagogical alternatives. These findings offer valuable insights for mathematics teacher education research.

A Study on the Design of Mathematics Education Program for Foreign Students Majoring in Natural Science and Engineering at University in Korea (이공계 대학 유학생을 위한 수학교육 프로그램 설계 및 적용)

  • Kim, Soocheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.5
    • /
    • pp.147-157
    • /
    • 2019
  • In this study, mathematics education program was developed for the foreign students who entered the science and engineering college of Korea in order to improve their basic competency and to prevent dropouts. It is applied to 5 Chinese students, 4 male students and 1 female student. Three students are majoring in engineering college and two students are majoring in natural science college. Before applying the mathematics education program to foreign students, most students did not draw a graph of the 'irrational function' and the 'exponential function' and did not understand the concept of the 'limit' at all. However, after applying the mathematics program, all foreign students were able to draw graphs of the various function and the limit values were calculated accurately. Through the results of this study, the researcher proposes some of the following. When developing mathematics education programs for foreign students, it is very important to develop teaching materials suitable for their level. Textbook developers need to select and organize contents that are essential for learning in university mathematics and to present mathematical concepts and examples considering the Korean language level of foreign students. Moreover, it will be necessary to try to present mathematical terms commonly used in Korea in their native language or English.

An Analysis of Example Spaces Constructed by Students in Learning the Area of a Trapezoid based on Dienes' Theory of Learning Mathematics (Dienes의 수학학습이론에 따른 사다리꼴의 넓이 학습에서 학생들이 구성한 예 공간 분석)

  • Oh, Min Young;Kim, Nam Gyun
    • Education of Primary School Mathematics
    • /
    • v.24 no.4
    • /
    • pp.247-264
    • /
    • 2021
  • The area of a trapezoid is an important concept to develop mathematical thinking and competency, but many students tend to understand the formula for the area of a trapezoid instrumentally. A clue to solving these problems could be found in Dienes' theory of learning mathematics and Watson and Mason' concept of example spaces. The purpose of this study is to obtain implications for the teaching and learning of the area of the trapezoid. This study analyzed the example spaces constructed by students in learning the area of a trapezoid based on Dienes' theory of learning mathematics. As a result of the analysis, the example spaces for each stage of math learning constructed by the students were a trapezoidal variation example spaces in the play stage, a common representation example spaces in the comparison-representation stage, and a trapezoidal area formula example spaces in the symbolization-formalization stage. The type, generation, extent, and relevance of examples constituting example spaces were analyzed, and the structure of the example spaces was presented as a map. This study also analyzed general examples, special examples, conventional examples of example spaces, and discussed how to utilize examples and example spaces in teaching and learning the area of a trapezoid. Through this study, it was found that it is appropriate to apply Dienes' theory of learning mathematics to learning the are of a trapezoid, and this study can be a model for learning the area of the trapezoid.

Changes in Statistical Knowledge and Experience of Data-driven Decision-making of Pre-service Teachers who Participated in Data Analysis Projects (데이터 분석 프로젝트 참여한 예비 교사의 통계적 지식에 대한 변화와 데이터 기반 의사 결정의 경험)

  • Suh, Heejoo;Han, Sunyoung
    • Communications of Mathematical Education
    • /
    • v.35 no.2
    • /
    • pp.153-172
    • /
    • 2021
  • Various competencies such as critical thinking, systems thinking, problem solving competence, communication skill, and data literacy are likely to be required in the 4th industrial revolution. The competency regarding data literacy is one of those competencies. To nurture citizens who will live in the future, it is timely to consider research on teacher education for supporting teachers' development of statistical thinking as well as statistical knowledge. Therefore, in this study we developed and implemented a data analysis project for pre-service teachers to understand their changes in statistical knowledge in addition to their experiences of data-driven decision making process that required them utilizing their statistical thinking. We used a mixed method (i.e., sequential explanatory design) research to analyze the quantitative and qualitative data collected. The findings indicated that pre-service teachers have low knowledge level of their understanding on the relationship between population means and sample means, and estimation of the population mean and its interpretation. When it comes to the data-driven decision making process, we found that the pre-service teachers' experiences varied even when they worked as a small group for the project. We end this paper by presenting implications of the study for the fields of teacher education and statistics education.

A Study on the Pre-Service Elementary Teachers' Lesson Plans for Math Underachievers with Hypothetical Learning Trajectories and Universal Design for Learning (느리게 배우는 학습자를 위한 초등예비교사의 수학수업 설계)

  • Cho, Mi Kyung
    • Communications of Mathematical Education
    • /
    • v.36 no.2
    • /
    • pp.287-311
    • /
    • 2022
  • This study was related to the cases in which pre-service elementary teachers designed math lessons tailored to math underachievers with learning trajectories and universal design for learning. Learning trajectories can be a basis to identify students' current state of understanding and development, and make a lesson plan responsively tailored to underachievers' state. And universal design for learning is a framework that removes potential barriers that may exist in math lessons from the time the lessons are planned, and guides the rich learning environment accessible to all learners. In order to provide an experience of designing math lessons considering the characteristics of math underachievers, this study required pre-service elementary teachers to create learning trajectories and make lesson plans with the principles of universal design for learning. The characteristics of the learning trajectories shown in the lesson plans and the results of applying the principles of universal design for learning were analyzed. By discussing the results, implications were derived regarding the necessity of lesson planning for math underachievers and the development of lesson planning competency of pre-service elementary mathematics teachers in teacher education.

Delphi Survey to Develop an Analysis Framework for Mathematics Textbooks from a Critical Mathematics Education Perspective (비판적 수학교육 관점에 따른 수학교과서 분석준거 개발: 전문가 델파이 조사를 중심으로)

  • Song, Ryoon-Jin;Ju, Mi-Kyung
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.1
    • /
    • pp.113-135
    • /
    • 2017
  • The purpose of the research was to develop an analysis framework for Korean mathematics textbooks from a critical mathematics education perspective. For this, we conducted a comprehensive literature review regarding critical theory, critical education, and critical mathematics education. Based on the literature review, we derived a preliminary framework for textbook analysis. To validate the preliminary framework delphi survey was carried out twice with 21 expert panelists in the field of mathematics education and multicultural education. The first delphi survey was conducted with open-ended questions to investigate diverse opinions regarding educational goals, contents, and teaching methods of critical mathematics education. The second delphi survey was conducted with Likert-type scale and it was analyzed using Mean, Contents Validity Ratio, Degree of Consensus. As the result of the whole research procedures, the final analysis framework was developed consisting of four categories: classical knowledge, community knowledge, communicative knowledge, and political knowledge. A development of the analysis framework from a critical mathematics education perspective could give a significant impact on the mathematics curriculum or mathematic teacher education in the Korea and a meaningful initial step for the effort of practicing critical mathematics education. It is expected that this study could not only incite consideration for the better mathematics education but also expand the prospect of research and practice in mathematics education. This study would provide a new paradigm of future mathematics education with which to teach and guide students to become members of world civil society with mathematical power and critical competency.

Analysis on the New Zealand Mathematics Curriculum: Focused on the Connectivity between Standards into Curriculum (뉴질랜드 수학과 교육과정 분석 - 교육과정 성취기준의 연계성을 중심으로 -)

  • Cho, Seongmin;Park, Ji Hyun;Choi, Inseon
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.423-441
    • /
    • 2017
  • New Zealand had reformed their national curriculum with competence and are applying the revised curriculum. As the 2015 revised national curriculum is clothed with competency-based curriculum, New Zealand may have important implications for the study of the Korean revised curriculum. In this study, we examine characteristics of the education system and the national curriculum in New Zealand. In addition, we analyze the standards into the New Zealand national curriculum in terms of 'curriculum connectivity' that is one of important curriculum criteria for improving the quality of education. For this, we look an overview of the relation between the New Zealand curriculum and NCEA, which is the core of the student-centered education system in New Zealand, and analyze the correspondence between the New Zealand curriculum and the Korean curriculum. And we establish analysis framework of curriculum connectivity based on these comparison analysis contents, and analyze Korean mathematics standards with corresponding levels from among the New Zealand mathematics curriculum. According to the results of this study, the New Zealand curriculum includes the most of standards which Korean high school students who want to enter university of natural sciences of engineering need to require. In addition, the New Zealand curriculum highlights statistical research activities for developing problem-solving ability in real life. From perspective of curriculum connectivity, 'in-depth contents' adding on to repeating mathematical concepts or contents are included in the New Zealand curriculum.

G/T Experts' Recognition on Educating ICT Core-competencies for Gifted Students in Science (과학영재를 위한 ICT 핵심역량 교육에 대한 전문가 인식 조사)

  • Lee, Jaeho;Jin, Sukun;Shin, Hyunkyung
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.143-152
    • /
    • 2016
  • In this paper, we attempted to provide the bases of effective educational programs for fostering ICT competencies of gifted students in science. For this purpose, we tried to answer the questions like 'What are the ICT core-competence for gifted students in science?' and 'How can we educate those competencies effectively?' We started by reviewing existing studies on ICT competencies for talented people in future society and then adopted one[6] as the basis for further validation. We tried to work with as many G/T experts as possible, and decided to use the online survey methodology because the experts are scattered all over the country. The survey was sent to the corresponding person who is in charge of G/T education in each area, and then e-mailed to G/T experts in that area. Through these procedures, three hundred four(304) G/T experts from all around the country participated in this survey. The results showed the followings: (1) G/T experts agreed with the importance and necessity of ICT competencies for gifted students in science; (2) G/T experts agreed with the validity of three core ICT competencies, which are 'knowledge and skills competence, creativity competence, and characteristic competence,' for gifted students in science; (3) G/T experts agreed with the validity of educational goals, which are suggested for fostering each ICT core-competence of gifted students in science; and (4) G/T experts regarded 'product-oriented education' and 'ICT device-oriented education' as important and effective types of education programs for fostering ICT competencies of gifted students in science.

Understanding Elementary School Teachers' Intention to Use Artificial Intelligence in Mathematics Lesson Using TPACK and Technology Acceptance Model (TPACK과 기술수용모델을 활용한 초등교사의 수학 수업에서 인공지능 사용 의도 이해)

  • Son, Taekwon;Goo, Jongseo;Ahn, Doyeon
    • Education of Primary School Mathematics
    • /
    • v.26 no.3
    • /
    • pp.163-180
    • /
    • 2023
  • This study aimed to investigate the factors influencing the intentions of elementary school teachers to use artificial intelligence (AI) in mathematics lessons and to identify the essential prerequisites for the effective implementation of AI in mathematics education. To achieve this purpose, we examined the structural relationship between elementary school teachers' TPACK(Technological Pedagogical Content Knowledge) and the TAM(Technology Acceptance Model) using structural equation model. The findings of the study indicated that elementary school teachers' TPACK regarding the use of AI in mathematics instruction had a direct and significant impact on their perceived ease of use and perceived usefulness of AI. In other words, when teachers possessed a higher level of TPACK competency in utilizing AI in mathematics classes, they found it easier to incorporate AI technology and recognized it as a valuable tool to enhance students' mathematics learning experience. In addition, perceived ease of use and perceived usefulness directly influenced the attitudes of elementary school teachers towards the integration of AI in mathematics education. When teachers perceived AI as easy to use in their mathematics lessons, they were more likely to recognize its usefulness and develop a positive attitude towards its application in the classroom. Perceived ease of use, perceived usefulness, and attitude towards AI integration in mathematics classes had a direct impact on the intentions of elementary school teachers to use AI in their mathematics instruction. As teachers perceived AI as easy to use, valuable, and developed a positive attitude towards its incorporation, their intention to utilize AI in mathematics education increased. In conclusion, this study shed light on the factors influencing elementary school teachers' intentions to use AI in mathematics classes. It revealed that teachers' TPACK plays a crucial role in facilitating the integration of AI in mathematics education. Additionally, the study emphasized the significance of enhancing teachers' awareness of the advantages and convenience of using AI in mathematics instruction to foster positive attitudes and intentions towards its implementation. By understanding these factors, educational stakeholders can develop strategies to effectively promote the utilization of AI in mathematics education, ultimately enhancing students' learning outcomes.

Suggestion of Computational Thinking-Scientific Inquiry (CT-SI) Model through the Exploration of the Relationship Between Scientific Problem Solving Process and Computational Thinking (과학적 문제해결과정과 컴퓨팅 사고의 관련성 탐색을 통한 컴퓨팅 사고 기반 과학 탐구(CT-SI) 모형의 제안)

  • Hwang, Yohan;Mun, Kongju
    • Journal of Science Education
    • /
    • v.44 no.1
    • /
    • pp.92-111
    • /
    • 2020
  • The 2015 revised science curriculum and NGSS (Next Generation Science Standard) suggest computational thinking as an inquiry skill or competency. Particularly, concern in computational thinking has increased since the Ministry of Education has required software education since 2014. However, there is still insufficient discussion on how to integrate computational thinking in science education. Therefore, this study aims to prepare a way to integrate computational thinking elements into scientific inquiry by analyzing the related literature. In order to achieve this goal, we summarized various definitions of the elements of computational thinking and analyzed general problem solving process and scientific inquiry process to develop and suggest the model. We also considered integrated problem solving cases from the computer science field and summarized the elements of the Computational Thinking-Scientific Inquiry (CT-SI) model. We asked scientists to explain their research process based on the elements. Based on these explanations from the scientists, we developed 'Problem-finding' CT-SI model and 'Problem solving' CT-SI model. These two models were reviewed by scientists. 'Problem-finding' model is relevant for selecting information and analyzing problems in the theoretical research. 'Problem solving' is suitable for engineering problem solving process using a general research process and engineering design. In addition, two teachers evaluated whether these models could be used in the secondary school curriculum. The models we developed in this study linked with the scientific inquiry and this will help enhance the practices of 'collecting, analyzing and interpreting data,' 'use of mathematical thinking and computer' suggested in the 2015 revised curriculum.